BodyPrinter: Fabricating Circuits Directly on the Skin at Arbitrary Locations Using a Wearable Compact Plotter (2020)

On-body electronics and sensors offer the opportunity to seamlessly augment the human with computing power. Accordingly, numerous previous work investigated methods that exploit conductive materials and flexible substrates to fabricate circuits in the form of wearable devices, stretchable patches, and stickers that can be attached to the skin. For all these methods, the fabrication process involves several manual steps, such as designing the circuit in software, constructing conductive patches, and manually placing these physical patches on the body. In contrast, in this work, we propose to fabricate electronics directly on the skin. We present BodyPrinter, a wearable conductive-ink deposition machine, that prints flexible electronics directly on the body using skin-safe conductive ink. The paper describes our system in detail and, through a series of examples and a technical evaluation, we show how direct on-body fabrication of electronic circuits and sensors can further enhance the human body.

References

Youngkyung Choi, Neung Ryu, Myung Jin Kim, Artem Dementyev, and Andrea Bianchi. 2020. BodyPrinter: Fabricating Circuits Directly on the Skin at Arbitrary Locations Using a Wearable Compact Plotter. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST ‘20). Association for Computing Machinery, New York, NY, USA, 554–564. DOI:https://doi.org/10.1145/3379337.3415840

paper    doi


Back to projects