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Abstract 

Wearable electronics are becoming crucial tools 

for everyday life. Therefore, interest in powering 

those devices is also increasing. However, the 

dimension of the wearable battery’s location was 

not reviewed thoroughly, despite its importance 

in user experience. Therefore, we propose a 

taxonomy of the location of the batteries of 

wearable devices through a literature review. 
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1. Introduction 

The importance of wearable devices is increasing 

these days. According to a market research, the 

wearable market’s compound annual growth rate 

was estimated at 25.91 percent from 2021 to 

2028 [24]. Moreover, 3 of every 5 wearable 

device owners use it daily [6]. Therefore, the 

battery’s wearability and charging are also 

becoming significant factors to consider when 

choosing wearables.  

Recent previous works were about powering 

wearables (e.g., the performance of batteries [1] 

and energy harvesting [8, 13]), but there was no 

survey of how manufacturers or researchers 

power their wearables. However, it is worth 

classifying since the location of batteries severely 

affects the wearability of the device and its 

charging.  

This paper was motivated by the following 

research question: "Where should we put 

wearable batteries for better usability?". To 

answer the question, we propose a survey and 

classification of wearable batteries and their 

locations. 

 

2. Related Work 

Previous works focused on describing the space 

by providing surveys of various wearables [10, 

18]. Some surveys also discussed the type of 

sensors used in wearables, which range from 

heart sensors [11] to light, force, sound, and 

location sensors [7]. 

Still, we could not find a study reviewing the 

dimension of location regarding the batteries of 

wearable devices. 

 

3. Review Methodology 

3.1 Data collection 

 
For the data collection, we identified 67479 

records from ACM digital library. Then, we found 

14 highly relevant research articles from various 

journals through PRISMA diagram (see fig.1). We 

fig. 1 PRISMA chart 

 



selected papers that explain their unique 

wearable hardware while excluding studies 

about developing algorithms for existing 

wearable devices. For further insight, we also 

referred to battery location data from existing 

wearable products within five years (e.g., Apple 

Watch9, Galaxy watch6). 

3.2  Data analysis 

 

 

We analyzed the advantages and disadvantages 

of the location of the device's battery and 

conducted thematic coding with 14 selected 

papers. Then, we created an affinity diagram to 

visualize (see fig. 2). As a result, we suggest three 

types of battery locations. 

3.3 Results 

3.2.1 type 1: Batteries placed within the 

device’s casing 

 In type 1, batteries are kept inside the device’s 

case, so no power cable is exposed. Due to 

space limitations, lithium-ion or lithium polymer 

batteries (12mAh-1000mAh) are frequently 

used in commercial wearables and prototypes. 

The batteries are usually lightweight (around 

2.4g~22.3g) and small (around 3.9mm * 

14mm * 30 mm~3.8 mm * 38mm * 75mm) 

[16] with a form factor of the wrist-wearing 

device. We classified most wrist-wearing 

wearables in the market as type 1. (e.g., Galaxy 

watch6, Apple watch9, Garmin forerunner 265, 

Xiaomi smart band8). In addition, we 

categorized the majority (10 out of 14) of 

selected papers as type 1. However, the capacity 

of these batteries needed to be increased for 

some of the devices to run a day (e.g., 

SmokeMon: 19 hours [2], Lumos: 5 hours [23]), 

which implies those devices will need frequent 

charging. Even commercial smartwatches need 

to be charged at least once every 2 to 3 days [4]. 

However, adapting batteries with sufficient 

capacities in type 1 is challenging. This is 

because the increase in battery size and weight 

means the device is to be bulky, which leads to 

a drop in usability. 

3.2.2 type 2: Batteries positioned 

according to ergonomic principles 

 For usability, type 2 devices consider human 

factors like the structure of the human body or 

fatigue from the device's weight. We classified 

3 out of 14 selected papers as type 2. In this 

case, power cables are likely to be exposed, and 

sometimes batteries are separated from the 

device and located in a particular position of the 

body. Unlike type 1, fewer size, location, and 

battery weight limitations exist. (e.g., 

Jumpmod: battery pack's weight was about 2kg 

[19]) Therefore, the battery pack can 

counterbalance the device's or user’s weight. 

(e.g., Meta Quest 3's battery is on the opposite 

side of the display for the counterbalance [17].) 

fig. 2 Affinity diagram of 14 selected papers 



Although there are fewer limitations about the 

battery's form, type 2 devices still use lithium-

based batteries. 

3.2.3 type 3: Energy harvesting 

  In case of lithium-based batteries, it has 

limited usage time per charge. However, 

wearable devices can harvest energy from their 

surroundings and users without batteries (see 

Table. 1). Energy harvesting is eco-friendly 

compared to the lithium-based batteries since it 

needs no charging and reduces the disposal of 

batteries [21]. In the literature, they mainly 

discussed harvesting the kinetic energy from the 

human body (KEH). (e.g., sensing location with 

passive RFID [13], using KEH transducers [12]) 

However, KEH including insole-based kinetic 

energy harvesting supplies low battery power 

(1.1-1.7mw, 10-20μJ) [15], which is not 

 Type 1.  

Batteries placed within the 

device’s casing 

Type 2.  

Batteries positioned 

according to ergonomic 

principles 

Type 3. 

Energy harvesting 

Features Lithium-ion or polymer batteries 

(12mAh-1000mAh) are 

frequently used in both 

commercial wearables and 

prototypes, with a form factor of 

wrist-wearing devices (e.g., 

Apple watch 9) 

Various battery sizes and 

capacities are used 

compared to type 1. Can 

use the battery to 

counterbalance the 

device's weight or the 

user’s action. 

Harvesting the kinetic 

energy of the human 

body is mainly 

discussed. (e.g., 

sensing location with 

passive RFID, or using 

KEH transducers) 

Advantages Relatively light-weighted 

compared to type 2. No 

obstructing power cable. 

Fewer limitations in size, 

location, and weight of 

the battery. 

Eco friendly. No 

charging. 

Disadvantages Difficult to deal with power-

hungry modules, Frequent 

charging (at least once in 2-

3days) 

The power cable might 

be obstructing 

Low battery power 

Examples Galaxy watch6, Apple watch9, 

SmokeMon, Lumos 

Meta quest 3, JumpMod Seiko kinetic watch  

fig. 3 Energy harvesting techniques for the wearables [25,  3] 

Table. 1 Taxonomy of 3 types of battery locations 

 



sufficient for Bluetooth and Wi-Fi modules [20]. 

We classified 1 out of 14 selected papers as type 

3. Even though there was insufficient paper 

about energy harvesting wearables, a 

commercial example for type 3 existed from 

Seiko that incorporated kinetic harvesting into a 

watch. The movement of the user's wrist or the 

rotation of the watch's crown generates energy 

[14]. 

 

4. Discussion 

4.1 Growing attention about energy 

harvesting wearables 

Energy harvesting technologies are in the 

limelight. As shown in Chapter 3.2.3, there are 

active discussions about energy harvesting 

technologies for wearables in the academic field 

[15]. Also, wireless energy harvesting (WEH) 

enables charging for power-hungry modules like 

Bluetooth [9]. Therefore, we assume that the 

future of using completely charge-free wearable 

devices is not far by combining WEH and other 

energy harvesting technologies like kinetic energy 

harvesting. 

4.2 Battery as an Advantage 

In some cases, batteries make a device more 

advantageous. For example, in Jumpmod, users 

jump better because the battery pack serves two 

functionalities: providing power and 

counterbalancing the weight from the user while 

jumping. Like Jumpmod, it is helpful to develop 

an alternative role of a battery to transform it into 

an advantage. Nowadays, battery researchers are 

developing a new type of flexible battery, which 

gives a new form to rigid wearable casings [22]. 

This battery will open a new chapter of wearable 

designs, allowing device flexibility. 

4.3 Social acceptability of battery’s locations 

Throughout the literature, there was a 

considerable amount of novel wearable 

interfaces [2, 19]. However, wearing it might be 

socially awkward, depending on the battery's 

location and form. For instance, AI-on-skin [5] 

puts its battery on the user's upper arm, which 

might be unfamiliar for locating wearable 

batteries. However, social acceptability changes 

as new technologies prevail. To explain, wearing 

Bluetooth earphones is natural these days, while 

it was not 20 years ago. Therefore, we expect the 

social acceptability of locating batteries to grow 

as novel wearing interfaces appear in the future. 

 

5. Conclusion  

Throughout the research, we collected location 

data of wearable devices from literature and 

wearable product data and classified them 

through thematic coding. As a result, we suggest 

three different aspects according to the battery's 

location to construct the taxonomy about the 

battery's location. Through these studies, our 

work aspires to be a starting point to discuss 

optimal battery locations for wearable devices.  
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