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Figure 1: Many home yoga exercise videos require keeping the screen in view, disrupting the ability to perform poses and the 
overall motion flow (left). FlowAR enables viewing full-body and fluid motion yoga exercises via static or dynamic augmented 
reality video overlays around the yogi, which are visible using a head-mounted display and are superimposed onto the view of 
the surrounding space (right). 

ABSTRACT 
Online ftness video tutorials are an increasingly popular way to 
stay ft at home without a personal trainer. However, to keep the 
screen playing the video in view, users typically disrupt their bal-
ance and break the motion fow — two main pillars for the correct 
execution of yoga poses. While past research partially addressed 
this problem, these approaches supported only a limited view of 
the instructor and simple movements. To enable the fuid execu-
tion of complex full-body yoga exercises, we propose FlowAR, an 
augmented reality system for home workouts that shows train-
ing video tutorials as always-present virtual static and dynamic 
overlays around the user. We tested diferent overlay layouts in a 
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study with 16 participants, using motion capture equipment for 
baseline performance. Then, we iterated the prototype and tested 
it in a furnished lab simulating home settings with 12 users. Our 
results highlight the advantages of diferent visualizations and the 
system’s general applicability. 

CCS CONCEPTS 
• Human-centered computing → Mixed / augmented reality; 
Visualization application domains. 
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1 INTRODUCTION 
Fitness videos are a convenient, popular and afordable way to prac-
tice physical exercises at home [34, 61]. Examples include videos 
with ftness exercises, yoga, calisthenics training, and dance tutori-
als — many of which are ofered on online streaming services, such 
as YouTube [48]. However, video tutorials require users to split 
their attention between the screen (e.g., a TV, computer, or mobile 
device), and their body movements. Such distractions interrupt the 
users’ motion fow and hinder the learning and the efectiveness of 
the workout [74]. 

Motion fow interruptions due to continuous screen monitoring 
while performing an exercise [16] are particularly signifcant for 
yoga, one of the most popular training activities (with 300 million 
practitioners worldwide [70]). Yoga is characterized by poses with 
large movements that engage the whole body by standing, sitting, 
and lying supine or prone [69], and emphasizes the fuid transition 
between poses to build balance and strengthen the muscles [4]. It 
becomes, therefore, difcult for yoga practitioners (i.e. yogis) to 
follow the reference instructions on a screen and to perform the 
poses correctly without disrupting the exercise fow. 

To mitigate this problem in yoga and other ftness activities, 
researchers employed displays that physically move along with the 
user or simulate the instructor’s movements. For example, Hoang 
et al. [24] proposed to instrument the user with a Head-Mounted 
Display (HMD) to ofer a First Person View of a Tai Chi 3D avatar 
instructor in Virtual Reality. Nakamura et al. [46] used instead a 
physical projector mounted on a moving robot to provide the afor-
dance of how the dance instructor moves in the video [46]. However, 
these approaches require recording the instructor’s movements via 
motion capture systems, and therefore they cannot directly leverage 
the large number of ftness videos already existing online. Further-
more, the limited viewing window ofered by a moving target (i.e., a 
moving projected screen [35] or an avatar in First Person View [78]) 
limit the applicability of these methods to simple and small motions 
that are not compatible with the variety of complex full-body poses 
of typical yoga exercises [67]. 

In this paper, we propose FlowAR, a system that supports yoga 
workouts with a variety of complex full-body movements (including 
rotations, fexions, and extensions at various levels [38]) without in-
terrupting the exercise’s natural motion fow. Our system leverages 
the large number of videos already existing online and displays 
them around the user as an augmented reality overlay rendered via 
a wearable HMD. We test diferent placement layouts and question 
how diferent visualization methods of the screen showing the yoga 
instructor impact the quality of the yoga exercise. To answer that, we 
conducted a user study in lab settings with 16 participants using a 
motion capture system to determine the baseline performance. We 
performed an in-depth analysis through a heuristic expert evalu-
ation, quantitative motion performance analysis, and qualitative 
evaluation, which resulted in identifying the optimal visualization 
method of the instructional video. Based on these results, we mod-
ifed FlowAR for deployment outside of a motion capture studio, 
using instead a 3D pose estimation algorithm that works with com-
monly available videos. We then tested the feasibility of the system 
in a furnished lab simulating realistic home settings via a second 
user study with 12 participants of various yoga expertise. 

In summary, our work provides the following three contribu-
tions: 

(1) We introduce FlowAR, a system that supports at-home train-
ing with commonly available yoga videos via a series of 
virtual screen layouts displayed around the user as an aug-
mented reality overlay. 

(2) Using motion capture data obtained in a user study, we val-
idated the feasibility and efectiveness of our system and 
answered the question of which screen layout visualization 
is best suited for yoga training. 

(3) We integrated into the system a state-of-the-art 3D pose 
estimation that uses conventional videos supporting testing 
of FlowAR outside of a motion capture studio. We then show 
the real-world applicability and performance of the system 
through a user study in a furnished lab, such as in one’s 
home, and with yogis of various levels of experience. 

2 RELATED WORK 
Our work takes inspiration from previous motion training research 
in sports and within the HCI community. In this survey of re-
lated work, we highlight the importance of motion fow in ft-
ness and yoga and review how it was supported and studied using 
technology-based motion training tools with various modalities, 
input user interfaces, and diferent types of visualizations. 

2.1 Importance of uninterrupted fow for 
physical exercises 

Motion training videos, like yoga or aerobic exercises, typically 
show the instructor’s movements which a practitioner simulta-
neously replicates in their home — a cost-efective and fexible 
alternative to ofine classes [48]. However, unlike personal training 
with an instructor who can provide immediate feedback or slow 
the pace when needed, at-home training in front of a screen (e.g., 
mobile phone, TV, etc...) can cause undesired interruptions of the 
motion fow during physical activity. For example, a yogi exercis-
ing on a new pose sequence might lose sight of the video content, 
causing a break from immersion [11] and hindering the formation 
of muscle memory [19]. 

Sport and HCI literature show that when this state of fow [30] 
is interrupted, both the focus and quality of the exercise deteriorate. 
In dance, for example, looking at the screen introduces delays and 
mismatches with the music [46]. In Tai Chi, the limited screen 
estate makes it difcult to learn large body movements that span 
over several meters [28]. Furthermore, while the head direction 
is considered an important standard movement in Tai Chi, the 
practitioner cannot freely move the head while maintaining a line 
of sight with the screen [20]. Similarly, it was observed that in golf, 
the correct posture collapses when the player moves the head to 
peek at the video on the screen [26]. 

In yoga, maintaining a constant motion fow is essential for blood 
circulation, injury prevention, and meditation [29, 53]. Yoga prac-
tice is inherently fuid as yogis move from one pose to another, and 
each body motion creates a supporting base for the next pose or 
movement [62]. However, it is not easy to maintain motion fow 
when practicing at-home yoga with videos because viewers are 
typically standing far away from a screen to perform full-body 
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Figure 2: Ashtanga Vinyasa Yoga Primary Series’s Sun Salutations A and B. Poses where the yogi face away from the front 
direction are highlighted in red. 

workouts and have to interrupt their motions to peek at the video 
reference on screen [16]. For example, Figure 2 shows the standard 
primary series of poses for Ashtanga yoga [50] (a classifcation 
of classical yoga), which include the Sun salutation A and B se-
quences [31] — two among the most common exercises in beginner 
yoga classes. The image shows, highlighted in red, that 22 poses 
out of 30 require the yogi to face away from the front direction, 
where the screen is usually placed (a similar argument could be 
made for any fxed location of the screen). Previous works on yoga 
training tools exist [8, 40, 65, 66, 75], but rather than focusing on 
motion training with videos, they focus on providing feedback for 
limited postures. The rest of this related work surveys systems and 
techniques that support motion fow in yoga and other sports. 

2.2 Visualizing trainers via movable displays or 
diferent modalities 

A major disruption when using a video tutorial for training is the in-
herently fxed location of the display with the video. Addressing this 
problem, researchers proposed interfaces based on movable [46] 
or projected displays [35, 60]. For example, Nakamura et al. [46] 
developed a dance training system using a robot-mounted display 
that moves like the instructor in the video. Kosmalla et al. [35] 
presented a system that supports indoor climbing using a projector 
to display the instructor’s video directly next to the user. However, 
movable physical or projected displays require considerable setup 
and expense yet still allow for a limited range of user motions. To 
mitigate the inconveniences caused by looking at a physical dis-
play fxed in space, researchers in the medical feld experimented 
with always-following displays using Head-Mounted Displays [76]. 
Research demonstrated that surgeons wearing HMDs were better 
able to remain attentive and move their arms comfortably [41], re-
sulting in shorter operation times [76]. However, these only tested 
delicate, unidirectional surgical movements, comparing two visu-
alization techniques. Unlike them, we test large, multidirectional 
yoga motions using various visualization layouts. 

Another problem with video training exercises is the inherent 
limitations of 2D visualizations, which cannot represent depth [54] 
and are susceptible to occlusions (e.g., when one part of the body 
obstructs the view of another part). To address this problem, re-
searchers have attempted to use diferent visualization techniques 
and modalities. For example, Xia et al. [72] used audio feedback, 

generated from the original video, to guide the magnitude and di-
rection of the user’s motion. However, this technique is limited 
to the motion of a single joint at a time, making full-body yoga 
movements not possible. 

2.3 Playback control via user input 
Another common disruption of the exercise fow is caused when the 
user attempts to navigate the video or control the video playback, 
using click-and-drag or touch commands. To solve this problem, 
researchers [7, 11, 18, 19] experimented with intangible user in-
terfaces that do not require the users to manipulate controllers 
to pause, play or navigate a video. Clarke et al. [11] developed a 
speed-adaptive system for Tai Chi that compares the instructor’s 
poses, extracted from a video using computer vision techniques, 
and the real-time practitioner’s pose, estimated via a Microsoft 
Kinect. When the poses do not match, the system adjusts the video’s 
playback speed to synchronize with the user’s movements. Chang 
et al. [7] developed a content-based voice navigation system that 
automatically extracts keywords from the video narration and al-
lows users to play, skip or rewind specifc parts of the video via 
voice commands. 

These user interfaces reduce the disruption of the motion fow 
when the user is attempting to directly control the video playback, 
but these works sufer the same limitations as traditional at-home 
exercises. In fact, for these works, the video is still displayed on 
a static screen, and the ability to control the video and playback 
speed does not necessarily translate into better motion fow. 

2.4 3D and immersive visualization training 
environments 

Several researchers [1, 6, 26, 42] proposed to represent the trainer’s 
motion via animated 3D characters instead of using simple videos 
and then project them on multiple screens or 3D immersive caves [23, 
25, 37]. To achieve high fdelity of the motion, these animations are 
typically generated using the 3D motion data that can be acquired 
using a motion capture system (e.g., OptiTrack, Vicon) with post-
processing (e.g, data cleaning, rigging, rendering). The advantage 
of these systems is that they can show the trainer from any desired 
or custom viewing angle. 

To fully exploit the 3D content, past research [9, 17, 74] also 
adopted HMDs to visualize the virtual trainer in stereoscopic view. 
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These works explored the efect of using diferent viewing per-
spectives (frst-person view, superimposition, third-person view, 
group training) of a 3D virtual trainer [71, 78] in various domains, 
such as Tai Chi [9, 24], ski [71], and simple guidance of mid-air 
movements [12]. Also in the domain of yoga, several immersive 
commercial applications use HMDs combined with 3D virtual train-
ers in front and surrounding layouts [32, 63, 68]. 

Similar to the above works, the system presented in this paper is 
also based on HMD visualizations. However, diferently from any 
prior work, our system uses plain and commonly available ftness 
videos rather than 3D content that has to be generated ad-hoc (e.g., 
via motion tracking or animation tools). By testing visualizations of 
the screen with diferent layouts, we also contribute to the scientifc 
literature on motion-guided training. 

3 THE FLOWAR SYSTEM 

Figure 3: ○a A yogi seeing a virtual screen overlay through the 
HMD and ○b examples of yoga poses in which the yogi would 
not be able to see the screen locked in the front location. The 
green highlighted parts show what the user would see on 
the HMD. The real world is in greyscale (the device’s default 
setting), and the video overlay is displayed in colors. 

We present FlowAR, an augmented reality training system that 
uses commonly available videos to support the practice of multi-
directional full-body yoga poses and their transitions in a seamless 
fow. Users wear the Oculus Quest HMD, generally used for virtual 
reality experiences but also has augmented reality capabilities, and 
see the surrounding environment via a real-time video stream cap-
tured by the HMD’s built-in cameras and an augmented Computer-
Generated (CG) video screen overlay (Figure 3.○a ). This technique 
involving a see-through video with a CG overlay is described as one 
of the types of augmented reality in the Reality-Virtuality Contin-
uum [44]. We chose this technique to allow users to see their limbs 
and possible obstacles (e.g., people or furniture) and prevent colli-
sions, considering that users might exercise in their living rooms 
or bedrooms. We chose the Oculus Quest as HMD, despite this de-
vice being more popular for Virtual Reality rather than Augmented 
Reality applications, because of its large feld of view [51], its light 
weight (503 grams, which is 63 grams lighter than the popular 
Hololens 2 1), and its low cost (under 400 USD, as of September 
2022). 

As shown in Figure 3.○b , the yogi cannot see the screen in a 
fxed location when performing various dynamic yoga poses with 

1https://www.microsoft.com/en-us/hololens/hardware 

diferent body directions. To solve this problem, FlowAR renders a 
virtual video screen overlay around the yogi, using various layout 
confgurations. These are designed to remain in sight despite the 
users’ head movements. By combining a virtual overlay of the video 
with a live-feed camera stream from the HMD, the system allows 
users not only to see the instructor but also to track their limbs and 
movements, as well as the surrounding environment. 

Below here, we explain the proposed screen layouts and their 
working principles, followed by a description of the prototype 
implementation. 

Figure 4: A yogi practicing the Down Dog pose using four 
augmented screen overlays: ○a Front (baseline) ○b Circular 
○c User-anchored ○d Trainer-anchored. The virtual trainer 
(blue) is invisible to the user and shown here only for clarity. 

3.1 Augmented Screens Layouts 
Figure 4 shows a user practicing the Down Dog pose. As visible 
in ○a , a single screen fxed in space (physical or displayed as an 
augmented overlay) does not provide enough coverage and ends 
up outside of the user’s feld of view. We propose three alternative 
layout: Circular, User-anchored, and Trainer-anchored. The 
frst is a static layout (i.e., the screens do not move in respect of 
the user), while the latter two are dynamic layouts (i.e., the screens 
move with or in respect to the user). 

Circular: the Circular layout (○b ) consists of eight evenly spread 
screens surrounding the user in a circle, each screen displaying 
the same video. This panoramic view of the instructor is inspired 
by previous works [9, 20, 32], which used copies of a 3D virtual 
coach surrounding a user immersed in Virtual Reality, to support 
immediate access to the reference movements. In the above example 
of the Down Dog pose, despite the head not facing forward, the yogi 
is still able to see the trainer on the rear screen. 

User-anchored: Diferently from the Circular static layout, 
which places the virtual screens in the world independently of 

https://www.microsoft.com/en-us/hololens/hardware
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the user’s position or movement, the User-anchored layout shows a 
screen that follows the user’s head (i.e., a local coordinate system). 
In practice, the screen is placed at a constant distance and orienta-
tion from the user’s head, resembling an always-visible Head-Up 
Display(HUD). The motivation for this choice is that the HUD 
overlay is known to support dual tasks such as monitoring visual 
information while engaging in physical activities that require situ-
ational awareness, such as reading while driving [22], or watching 
educational videos while walking [49]. HUD was also employed for 
yoga training with 3D characters in Virtual Reality following the 
user’s viewpoint [68]. We borrow this technique to show an AR 
screen overlay with the trainer’s video, thus ensuring that the user 
can always see the reference motion in any posture. In the Down 
Dog pose example, the virtual screen remains in front of the yogi, 
appearing on the foor (○c ). 

Trainer-anchored: like the User-anchored layout, also the Trainer-
anchored layout is dynamic, but in this case, the screen moves fol-
lowing the trainer’s viewpoint (the anchor point is the trainer’s 
head). In other words, the screen moves following the correct ref-
erence motion, hinting to the user the distance from the screen 
and the direction they should face to correctly perform the exercise 
(○d ). The concept of gently nudging users to alter their posture is 
known in ergonomics literature [57], but it is exploited for the frst 
time here in the domain of ftness videos. In the Down Dog pose 
example, the yogi can maintain a good view of the screen as long 
as she/he moves following the trainer. 

Figure 5: Implementation of Trainer-anchored layout: ○a the 
Trainer-anchored layout is nudging a user to alter posture 
while the User-anchored layout is following the user. ○b A 
virtual trainer is calibrated to the user’s height. 

From the technical point of view, the Trainer-anchored layout is 
more challenging than the others, because it requires the coordi-
nates of the 3D motion performed by the trainer to compute the 
screen position/orientation. This 3D motion data can be obtained 
in various ways, such as 3D motion capture systems [6, 9] and 
3D pose estimation [11, 42]. We will show the feasibility of both 
methods in the studies presented in this paper. Furthermore, it is 
not sufcient to directly map the trainer’s 3D motion coordinates to 
the screen, as the diferences in height between the trainer and user 
could result in incorrect postures (e.g., if the trainer is taller than 
the user, looking forward for the trainer might translate to looking 
upward for the user). Therefore a user-dependent calibration and 
coordinates re-targeting process are necessary (see Implementation 
section for details). 

3.2 Implementation 
FlowAR relies on the augmented reality capabilities of the Ocu-
lus Quest 2 HMD 2 to render the screen’s layout overlay. Using 
its 4 built-in front cameras, the Oculus Quest 2 HMD provides a 
live see-through camera stream (passthrough API 3) that shows 
the surrounding environment in greyscale. This is augmented by 
a graphical overlay with the screen layout displaying the prere-
corded ftness videos. We used C# and Unity 3D to compute the 
screen placement in the space, and the rendering was achieved at 
70 fps. The code and video were preloaded on the HMD allowing 
its untethered usage. 

Following the ergonomic recommendation in [57], using Unity, 
we set the initial distance of all the screens from the user to 1.3 m 
and rotated them 6◦ backward. To select the screen size used in 
all our layouts, we informally tested various sizes in the range of 
11-inch (e.g., table PC) to 80-inch displays, fnally choosing the 
32-inch screen size because it provides enough real estate to cover 
a wide range of body-movements without completely obstructing 
the view of the surrounding environment. 

For the implementation of the Trainer-anchored layout, we frst 
collected 3D motion data either directly from an expert trainer via 
motion capture (Study 1) or using a regular video fed in a 3D pose 
estimation algorithm (Study 2). For 3D motion capture data, we 
used the Motive Body software by OptiTrack to extract the joints’ 
position and orientation from the point cloud and manually cleaned 
the data (e.g., labeling missing, wrong, or swapped markers). This 
data was exported to Unity and mapped to the 18 joints of an 
invisible 3D skeleton representing the virtual trainer: head, neck, 
spine (3 joints), pelvis, shoulders (2), elbows (2), wrists (2), hips (2), 
knees (2), and ankles (2). 

Because the fnal computed height placement of the screens in 
the Trainer-anchored layout depends on the trainer’s height and 
relative joints length (e.g., legs vs. torso), the virtual joints of the 
invisible 3D character representing the trainer had to be translated 
and scaled to match those of the actual user. This re-targeting 
process requires a one-time calibration, in which users’ body parts 
and height were manually measured and input into the system (the 
process could be automated as in [56], but it is beyond the goal of 
this paper). The result is that the reference movement of the trainer 
matches the body dimensions of the user. Finally, the virtual screen 
placement and orientation are computed to perpendicularly face 
the head of the virtual trainer (1.3 m away, 6◦ tilted backward). 
The small motion jitter of the screen is attenuated using a rolling 
average flter of 0.5 seconds applied to translation and orientation. 

4 STUDY 1: BASELINE PERFORMANCE 
We conducted a user study to gauge how a ftness video, visualized 
using diferent augmented screen layouts, afects the user’s correct 
execution of a yoga exercise (measured as posture accuracy and 
motion fow). We therefore tested the three proposed screens layout 
—Circular, User-anchored, Trainer-anchored — vs. a baseline 
condition (Front), which consists of a single static screen placed 
in front of the user, resembling a TV monitor. For comparison 
purposes, the Front layout was also presented as an augmented 

2https://store.facebook.com/kr/quest/products/quest-2 
3https://developer.oculus.com/blog/mixed-reality-with-passthrough 
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overlay visible with the HMD and with the same parameters of the 
other conditions (32-inch, 1.3 m away, 6◦ tilted). 

We recruited a professional yoga instructor to help us design 
a balanced yoga sequence of various movements and poses (Fig-
ure 6.○b ), as well as to evaluate the quality of the user’s exercises 
via a heuristic evaluation. The instructor has more than ten years 
of yoga experience and was certifed for KPJAYI (K. Pattabhi Jois 
Ashtanga Yoga Institute), Sharath Yoga Center, in 2010. We also 
employed a full-body motion tracking system to record both the 
trainer’s and all users’ motion data. The trainer’s data served both 
as baseline performance and to compute the screen position and 
orientation for the Trainer-anchored layout. 

4.1 Participants 
We recruited sixteen participants (8 females, 8 males) aged 20-31 
(M: 26.5, SD: 3.1) via a posting on our institution’s announcement 
web portal. Nine participants reported to workout from home us-
ing YouTube videos at least once a week (M: 1.6, SD: 1.1). Five 
out of sixteen participants had less than three months of yoga 
experience, four through ofine classes in yoga studios and one 
through YouTube videos. Eleven participants reported that they 
had previously experienced virtual reality, and fve of them had 
also experienced augmented reality. 

4.2 Motion tracking and yoga sequence 
After wearing a 3D motion tracking suit with 50 passive retro-
refective markers, the instructor performed the reference yoga 
exercise. We simultaneously recorded the 3D motion data using 8 
OptiTrack infrared Prime cameras at 120 fps, and a 1080p (30 fps) 
audio-video footage showing a perspective view of the instructor, 
using a mobile phone (Samsung Galaxy Note 8). The exercise se-
quence was determined to target beginner yogis, to ft a 4.7 m x 
3.5 m x 2.8 m height capture region, and to account for wearing an 
HMD, like in Figure 3.○a . The yoga instructor was free to choose 
the poses of the sequence, but we asked to avoid poses that would 
require the yogi to place the head on the ground, so to prevent 
HMD from bumping into ground. The resulting recorded sequence 
is an 8-minute long exercise, composed of a sitting warm-up session 
(4 minutes) and a standing main workout session (4 minutes). 

The warm-up session serves as a distraction task to reduce learn-
ing efects carried over across sessions. Each workout session con-
sists of several poses, made of motion transitions among diferent 
body alignments (postures). In other words, a pose is not a static 
posture, but rather a fuid and slow transition among postures, as 
explained in [59]. For example, Pose A (Extended Side Angle Pose) 
starts from a lunging posture and, through a fuid motion transition, 
terminates with an extended arm. All the poses of our session are 
visible in Figure 6. Some poses (A, B, C) were repeated for both the 
left and right side of the body to complement the exercise (e.g., A 
pose is complemented by A’). Finally, the video is accompanied by 
the trainer’s voice narration (recorded during the trainer’s reference 
exercise) which describes the poses performed. 

4.3 Experiment design 
The experiment followed a within-subjects design with four condi-
tions, clustered in two order groups: static layouts (Circular and 

Front) and dynamic layouts (User-anchored and Trainer-anchored). 
During the study, each participant tested all four screen layout 
conditions following a Latin-square design balanced for the pre-
sentation group (static vs. dynamic), resulting in eight possible 
sequence orders. We chose to cluster the four conditions in two 
groups (static vs. dynamic layouts) presented in balanced alter-
nating order to minimize the learning efects and possible confu-
sion carried over apparently similar layout conditions (e.g., from 
User-anchored to Trainer-anchored). Overall, each participant ex-
perienced a preparation phase, four exercise sessions, and a fnal 
interview (Figure 6.○a ). 

During the preparation phase, the participants completed a demo-
graphic survey and watched twice the instructor’s video sequence 
on a tablet PC to familiarize themselves with the pose sequence. 
Afterward, the participants wore the motion capture suit and the 
HMD and completed a calibration session. The participants then 
performed the four workout sessions (warm-up and main) with a 
questionnaire at the end, followed by a rest between sessions. After 
the four workout sessions, we conducted an interview to gather 
the participants’ feedback. The experiment took about 2 hours to 
complete, and participants were compensated with 30 USD in local 
currency. 

4.4 Data collection and analysis 
Besides demographics and interviews, we collected 3D motion data 
for each participant. We performed both qualitative and quantitative 
analyses of this data, such as a holistic evaluation of each key pose 
by the expert instructor, and a quantitative performance analysis 
of timing and posture errors (similar to [24]). Following previous 
work [10], we also collected participants’ feedback on the level of 
perceived competence and value/usefulness of the diferent screen 
layouts. All interviews were audio-recorded, transcribed, translated, 
and analyzed using open and axial coding methods [14]. Here are 
more details about each of the evaluation methods we used: 

4.4.1 Heuristic expert evaluation. We performed a heuristic evalu-
ation with the expert yoga instructor who composed the sequence 
using a questionnaire followed by a semi-structured interview. We 
modifed the questionnaire together with the instructor by selecting 
a subset of the existing metrics presented in prior work [47] accord-
ing to their relevance to our exercise. With this questionnaire, the 
expert evaluated participants’ yoga fow competence for each of 
the 7 key poses on a 5-point Likert scale, considering the following 
four factors: form, ease, ability to follow instructions, and holding 
duration. These metrics were fnally averaged in a single score. 

For the evaluation, the instructor received a video for each par-
ticipants with a 3D character animation of the motion performed 
by each participant for all layout confgurations (e.g., see Appendix 
Figure 14.○a ). The 3D character mapped to the participant’s move-
ments (shown in yellow) were then overlaid with a semi-transparent 
character representing the trainer’s motion reference (in blue). We 
provided the video both in its entirety and with the 10-20 seconds 
windows around the target poses. We used a 3D character anima-
tion (with the captured motion data) instead of a plain video of the 
participants to limit the scope of the evaluation only to the motion 
fow and the pose correctness, reducing visual bias due to other 
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Figure 6: Study 1 procedure: ○a overall procedure with four sessions, and the ○b seven key motions(A-B-C-A’-B’-C’-D) for the 
main workout sequence. 

factors (e.g., physical look, breathing rate, facial expressions, pro-
viding anonymity, etc...). Finally, we also interviewed the instructor 
to gather more detailed feedback about the given ratings. 

4.4.2 Motion performance analysis. To quantify the participants’ 
performance, we measured their temporal and spatial deviation 
from the trainer’s reference movements using the motion data 
obtained from the optical tracking system. The Python scrips to 
compute the temporal and spatial deviations are open source and 
available from this repository 4. 

Temporal deviations occur when the participant performs a move-
ment slower or faster than the reference. Like previous work in the 
domain of movement processing [64], we performed a Dynamic 
Time Warping (DTW) [3] to map the participant’s motion onto 
the trainer’s reference motion. Specifcally, because we are dealing 
with compound movements, we performed a multi-dimensional 
DTW-D [58] on the z-normalized three-dimensional position of 
tracked joints. The result from the DTW-D is a frame-by-frame 
mapping between the trainer’s and participants’ motions, which 
we then used to calculate the deviation of the participant’s motion 
from the reference. To compute the cumulative timing error, we 
fnally converted the absolute frame diference into seconds and 
returned its mean value. 

Spatial deviations occur when the participant’s movement does 
not match the expert’s movement (i.e., wrong posture or body align-
ment). Similar to OneBody [24], we report the Mean Per Joint Angle 
Error [27] which is the aggregated angular diference of selected 
joints when comparing the user data with the reference. This metric 
is advantageous for our study setup because it is invariant with 
the user’s absolute position in space. In our analysis, we report the 
mean angular error of shoulders, elbows, hips, and knee joints. To 
eliminate errors due to temporal deviations, we again use the frame 
matching previously computed using the DTW-D. 

4.4.3 User feedback from questionnaires and interview. To collect 
the participants’ confdence with the performed exercise, like in 
[36], we used the Intrinsic Motivation Inventory questionnaire 
(IMI [52]) with Perceived Competence as subscale. We also added the 
Value/Usefulness subscale to record their impression on the utility 
of each visualization layout used for yoga. Participants answered 

4https://github.com/hyeyoungjo/dtw-for-two-movements 

each question in the IMI subscales using a 7-Likert scale (see Appen-
dix.Table 2). We also collected the participant’s perceived motion 
sickness on a 4-point Likert scale using the Simulator Sickness 
Questionnaire (SSQ [33], see Appendix.Table 1) to verify if any of 
the screen layout caused disorientation during the exercise. 

In the fnal semi-structured interview, we asked participants to 
elaborate on their ratings, and further explain their impressions or 
preferences toward each overlay visualization. 

5 RESULTS OF STUDY 1 
The study results are organized into three parts: (1) expert evalua-
tion, (2) motion performance analysis, and (3) user feedback. 

The efect of diferent overlay conditions on the expert ratings for 
each pose, performance inaccuracy (temporal/spatial deviations), 
and questionnaire results were all tested using a Friedman test 
(� = 0.05), and pairwise post-hoc analysis was performed using 
Wilcoxon signed-rank test with Bonferroni correction (� = 0.0083). 

5.1 Expert evaluation 
Expert scores for individual key poses and their averages are shown 
in Figure 7 with the corresponding Friedman test results at the bot-
tom. Overall, the mean scores show a statistical diference for screen 
layout condition (�2 (3) = 9.162, � = 0.027), but pairwise com-
parisons analysis with Wilcoxon signed-rank test was not signif-
cant. Nonetheless, static layouts received, on average lower ratings 
(� : 2.760, �� : 0.028) than dynamic layouts (� : 2.915, �� : 0.007). 

We also performed an analysis for individual poses (Figure 7). 
Our statistical analysis with Friedman tests did not reveal difer-
ences amongst screen conditions for specifc poses. Nonetheless, 
Figure 7 shows that, in all poses, either of the dynamic layouts 
was always rated the highest (pose C’ was a tie). Specifcally, the 
scores for the User-anchored layout were the highest during the 
frst half of the exercise (poses A-C — � : 2.880, �� : 0.250), while 
the Trainer-anchored layout led to the highest rankings for the sec-
ond half of the exercise (poses A’-C’, D — � : 3.110, �� : 0.208), 
suggesting some kind of learning efect. 

Finally, upon suggestion from the expert, through video analy-
sis, we counted the number of times the head direction abruptly 
changed from the gazing point narrated in the video (e.g., caused by 
distractions or screen monitoring). Raw results for these look-away 

https://github.com/hyeyoungjo/dtw-for-two-movements
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Figure 7: Expert evaluation results show the expert ratings per pose and averaged across participants. Mean scores (and standard 
deviation) are displayed on the bars, while Friedman test results are at the bottom. 

instances are shown in Figure 8. A Friedman test reveals difer-
ences across screen layouts (�2 (3) = 43.268, �<0.001), and pairwise 
comparisons revealed that, unsurprisingly, both User-anchored and 
Trainer-anchored had fewer screen look-aways than any of the 
static conditions. 

We fnally collected several observations from the expert during 
the interview. The main important fndings that emerged are the 
followings: 

Screen look-aways damage the posture and break the mo-
tion fow: the expert instructor highly emphasized the importance 
of maintaining the correct alignment of the head and of the body, 
stressing that "yoga is a training that develops the ability to recognize 
one’s body in space" and that gaze direction leads to a natural motion 
fow. In the words of the trainer: 

"The gaze is tightly related with the fow of poses and 
breath [...] If the head direction goes against the motion 
fow, it’s not the right posture even if all the rest of the 
body follows the instructions." 

According to the instructor, jerky head movements such as look-
ing at a screen to follow the instruction caused harmful efects such 
as "stif necks", "shrunk shoulders", "lack of focus", and "direction 
confusion". These observations were more common for the static 
layouts. 

"It seemed that they [the users of static layouts] could 
not concentrate. Their heads were constantly moving 
back and forth [...] confusing the left foot with the right 
[...] Some of them even did the left side of the exercise 
twice [poses A-C instead of A’-C’]." (The trainer) 

Figure 8: Look-aways. An example of look-away (left) and a 
graph with the occurrence mean count of look-aways (right). 

Dynamic layouts support diferent types of users: Although 
mean scores were similar for the User-anchored (� : 2.910, �� : 
0.920) and the Trainer-anchored layout (� : 2.920, �� : 0.940), the 
expert noted that the participants’ motion fow aforded by these 
layouts was diferent. Specifcally, the expert qualifed the motion 
fow during the User-anchored condition as "good" and "natural-
looking" across all participants, but for the Trainer-anchored con-
dition the motions were described as ranging between "great" 
and "unstable", depending on the participant. For example, despite 
the overall high scores of poses A’(� : 3.250, �� : 0.931) and 
C’(� : 2.813, �� : 1.276), some participants performed poorly, 
showing unbalanced postures when stretching backward due to 
lack of core muscles. In other words, while the User-anchored layout 
supported a stable motion fow across participants, performance 
using the Trainer-anchored layout seemed to bond with the partici-
pant’s pre-existing physical capabilities 

"Their [Trainer-anchored layout users] posture was un-
stable and unnatural. It looked like they could not put 
any strength to tighten their abs. So, the overall posture 
looked not in a good balance." (The trainer) 

5.2 Motion Performance Analysis 
Figure 9 shows the mean timing and spatial errors (angle devia-
tions from reference) for all participants in individual poses and on 
average. A Friedman test was conducted for both types of errors 
and test scores are indicated at the bottom of Figure 9. 

Looking at the cumulative mean timing errors, we report statis-
tically signifcant diferences for screen layouts (�2 (3) = 8.025, � = 
0.045) but no pairwise statistical diferences. Overall, dynamic lay-
outs led to smaller mean timing errors (� : 1.095, �� : 0.078) than 
the static layouts (� : 1.420, �� : 0.085), with timing errors being 
the smallest in the User-anchored condition (� : 1.042, �� : 0.438), 
closely followed by the Trainer-anchored (� : 1.148, �� : 0.634) 
condition — though no statistical diferences were found. As for 
the correctness of postures, no statistical diference was found 
among the mean joint angle errors (�2 (3) = 4.350, � = 0.226) 
but only for individual poses: B (�2 (3) = 7.950, � = 0.047), A’ 
(�2 (3) = 12.675, � = 0.005), C’ (�2 (3) = 9.300, � = 0.026), and D 
(�2 (3) = 8.175, � = 0.043). Also, joint angle errors found in the 
dynamic layouts were lower than static ones (� : 16.750, �� : 0.212 
vs. � : 18.185, �� : 0.686). 
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Figure 9: Performance analysis result shows the cumulative ○a temporal inaccuracies (timing errors) and ○b spatial inaccuracies 
(joint angle error) for each pose and average. Mean scores (and standard deviation) are displayed on the bars, and Friedman test 
results are at the bottom. 

5.3 User Feedback 

Figure 10: Questionnaire results about the level of ○a con-
fdence, ○b value/usefulness, and ○c motion sickness. Bars 
represent mean scores for all users. 

Figure 10 shows the summary of the participants’ responses 
to the questionnaires. Users gave signifcantly diferent scores on 
perceived competence (i.e., confdence) (�2 (3) = 12.898, � = 0.005), 
value/usefulness (�2 (3) = 29.013, p < 0.001), and motion sickness 
level (�2 (3) = 11.776, � = 0.008) for diferent conditions. Overall, 
participants reported to feel more confdence and perceived more 
value for the dynamic layouts, rather than for the static ones (conf-
dence level: � : 4.480, �� : 0.495 vs � : 3.705, �� : 0.389; perceived 
value: � : 5.605, �� : 0.488 vs. � : 3.745, �� : 0.870). As to mo-
tion sickness, all conditions scored slightly less than 1, meaning 
that the participants felt able to work out in all conditions without 
experiencing any severe motion sickness. It is worth noting that 
the User-anchored layout caused signifcantly less motion sickness 
than the baseline Front condition (� = −2.878, � = 0.004). 

The interviews with participants corroborate many of the re-
sults presented above. All sixteen preferred dynamic layouts over 
static layouts — 10 of which selected the User-anchored layout as 
their favorite ("[The User-anchored layout] was the most comfortable 
because it was always in front of me wherever I looked [...] it gave me 
more energy to spare. So, I was able better observe the details of the 
movements." — P11). The Trainer-anchored layout received mixed 
reviews. Three participants (P6, P8, P11) strongly disliked it because 
they felt it was too challenging ("I am not fexible as the instructor, 
so I could not see the screen in some poses, even if I tried hard ." — 
P6). Other participants instead appreciated that they could better 
notice their own mistakes with this layout. As a result, 13 of 16 
participants mentioned this self-correcting mechanism positively 
in the interviews: "I felt like I was learning properly. When I had to 
look up to see the screen, I realized the teacher was straightening the 
back. So, I was able to correct my posture." — P4). 

More generally and regardless of the preference for screen lay-
outs, the participants agreed that the usage of HMDs rather than 
fxed displays helped them stay focused on the exercise, supporting 
their fow, corroborating prior work about the usage of HMDs [76]. 
For example, P5 commented that: "My concentration level was much 
higher with the HMD. I felt like I was alone even though I could see 
the experimenter in the background. It was fun because it just felt 
diferent." On the other hand, the participants also voiced discomfort 
when using HMDs for certain poses where the head was upside 
down or very close to other body parts (e.g., Down Dog and Wide-
legged Forward Fold). For example, P3 commented that the "HMD 
felt heavy when I lowered my head. It does not hold in place [because 
of the strap], so the video becomes opaque. It is a similar discomfort 
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of when I work out wearing glasses." We indeed observed that when 
in these poses, participants often reached their HMDs with their 
hands to readjust their position. 

5.4 Summary of results 
The results from the expert evaluation, motion performance analy-
sis, and user feedback combined lead to three main fndings: 

(1) In general and across all poses, dynamic layouts (User- and 
Trainer-anchored) achieved better scores from the expert and 
led to fewer timing and posture errors. 

(2) All participants as well as the expert preferred the dynamic 
layouts over the static ones. Specifcally, most participants 
generally preferred the User-anchored layout because it felt 
easier. However, the Trainer-anchored layout displayed some 
potential of nudging users with more physical training to-
ward better exercise practice (e.g., closer to the instructor’s 
reference posture). 

(3) Head movements (like screen monitoring) were the main 
factor for the lower performance and ratings of the static 
layouts. Dynamic layouts are less afected by sudden head 
movements. 

6 FLOWAR WITH POSE ESTIMATION 
The paper’s original motivation was to support at-home ftness 
exercises using commonly available online tutorial videos (i.e., from 
YouTube). However, up to this point, we relied on a motion capture 
system to generate the instructor’s 3D motion data — data that 
we used to both enable the Trainer-anchored screen layout and 
to perform the user-trainer comparative performance analysis of 
Study 1. In this section, we describe how we modifed FlowAR to 
enable the acquisition of 3D motion data directly from the video 
tutorial using 3D pose estimation. 

Google’s BlazePose 5 is a state-of-the-art computer-vision algo-
rithm capable of extracting 2D/3D features (33 landmarks such as 
joints and facial features) from a 2D video, and it is typically used 
for ftness or sports applications. We selected BlazePose for its easy 
accessibility (open-source), speed, and proven accuracy in yoga 
poses. Prior work demonstrated a PCK@0.2 (Percent of Correct 
Points with 20% tolerance) of 84.5 for a 2D yoga dataset [2], and 
an MPJPE (Mean Per Joint Positional Error) of 121 mm of for a 
3D yoga dataset [15] — numbers that show that, for the domain 
of yoga ftness, BlazePose outperforms other state-of-the-art pose 
estimation algorithms [2, 15]. Although pose estimation can be 
performed in real-time, we pre-computed it ofine to achieve the 
highest accuracy. We used a PC equipped with an AMD Ryzen 9 
5900X CPU at 3.70 GHz, 64GB of RAM, and an NVIDIA GeForce 
RTX 3080 (10 GB) graphic card. The average time of data generation 
was measured as 0.1 seconds per frame. It took, for example, 30 
minutes to extract the 2D/3D motion data from a 10-minute long 
video (30 fps). 

We used a Python script 6 to precompute and export the land-
marks from a ftness video using the bespoke 3D and 2D pose 
estimations. Then, we input the extracted video instructor’s 2D 
and 3D landmark coordinates with the user’s height information 

5https://google.github.io/mediapipe/solutions/pose 
6https://github.com/hyeyoungjo/video-pose-estimation 

into the Unity engine, where an automated script reconstructed 
the instructor’s character in 3D space and calibrated its dimensions 
with the provided data. Specifcally, we used the 3D coordinates to 
calculate the joints’ locations and their relative movements, while 
we used the 2D coordinates to determine the initial vertical posi-
tion and estimate the horizontal translations of the whole target 
skeleton in the world coordinates. For calibration, we also adjusted 
the virtual instructor’s joint length accounting for the user’s mea-
surement. To place a video screen in front of the virtual trainer’s 
head in the Trainer-anchored layout, we used the vector between 
the nose and the rest of the facial feature points to infer the correct 
screen orientation and position. Finally, as before, we applied a 
rolling average flter of 0.5 seconds for a smooth transition. 

7 STUDY 2: APPLICABILITY IN HOME-LIKE 
SETTINGS 

The frst user study aimed to assess the overall feasibility of FlowAR 
and to determine which screen visualizations performed best. We 
concluded that participants preferred the dynamic screen layouts 
and that these led to better performance. However, because the frst 
study was conducted in an empty, spacious lab using motion capture 
data to generate the Trainer-anchored layout, it did not ofer insights 
into the system’s real-world applicability at home, where there are 
possible distractions caused by the surrounding environment and 
no motion capture system to support the Trainer-anchored layout. 
This second study further explores the diferences between the 
two dynamic screen layouts (User- and Trainer- anchored) but in a 
furnished and smaller lab simulating the home environment. In this 
study, tracking was achieved using 3D pose estimation in place of a 
motion capture system which demonstrates the feasibility of using 
these visualizations on commodity hardware at home. We also 
considered the participant’s experience with yoga to test whether 
it afects layout preference and to obtain rich qualitative feedback. 

7.1 Experiment room and material 
In a real-world use case, users would be able to train from their 
homes using online ftness videos augmented by the FlowAR over-
lays, and without the need for pre-captured or edited motion data. 
Thus, we designed a user study that uses a YouTube video7 as input, 
from which the motion data was extracted via pose estimation. The 
video was chosen to showcase various narrated yoga poses that 
do not require placing the forehead on the ground and with the 
instructor always well visible on screen. Furthermore, we were in-
terested in providing a surrounding environment that resembles a 
real home, and seeing whether the background and objects around 
the user interfered with the overlays. Thus we prepared a 4.0 m 
x 3.7 m x 2.5 m space with various furniture and a camera facing 
the user. We chose a lab-study setup with a room-like environment 
rather than the users’ homes to partially control the environment 
across participants and thus be able to pin changes of performance 
to the FlowAR system rather than the uncontrolled surrounding 
environment. As shown in Figure 11.○a , participants wore their 
workout clothes instead of motion capture suits and practiced yoga 
on a matte surrounded by household appliances and furniture. 

7https://youtu.be/Wkmarh2Ps_o 

https://google.github.io/mediapipe/solutions/pose
https://github.com/hyeyoungjo/video-pose-estimation
https://youtu.be/Wkmarh2Ps_o
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7.2 Experiment design 
This study follows a within-subject design with two layout con-
ditions (User-anchored vs. Trainer-anchored), presented in a fully 
balanced order. We recruited 12 participants (6 females, 6 males) 
aged 22-31 (M:25.4, SD:3.0), 6 of which had no yoga experience. 
For participants with yoga experience, that varied between 2 to 24 
months of ofine attendance at a yoga studio. Like before, we col-
lected motion data for analysis, but this time using video recordings 
of participants and subsequently extracted their motion data with 
the BlazePose algorithm. As before, we collected user preferences 
via questionnaires and interviews, but also task workload ratings 
using a NASA-TLX questionnaire [21]. 

Figure 11: FlowAR study 2: ○a setup and ○b seven key motions 
from YouTube video. 

The study procedure closely resembled that of our previous 
study. As before, after an initial preparation phase (i.e., demograph-
ics, watching the training video, wearing HMD, calibration), the 
participants completed two 10-minute long workout sessions (one 
per condition) with rest in between. To prevent the HMD from 
sliding in bending poses, we substitute the Oculus Quest 2’s default 
elastic strap with the rigid one (Elite Strap8). Also, We carefully 
ensured that the order of presentations was balanced for the yoga 
expertise variable. For the workout, we clipped the YouTube video 
to 10-minutes. In the video, there is no warm-up session, and the 
exercise consists of 7 key-poses (see Figure 11. ○b for details). Af-
ter the workout, we conducted a 30 minutes post-hoc interview 
on the general impression of two screen layouts and the usability 
of FlowAR in home settings. The experiment lasted 1.5 hour, and 
participants were compensated with 15 USD in local currency. 

7.3 Results 
7.3.1 Performance analysis. The performance analysis with motion 
data followed the same procedure as that described in the frst 
study. A Wilcoxon signed-rank test (� = 0.05) was used to compare 
variables between conditions (User- and Trainer-anchored layouts). 
Figure 12 shows an overview of all mean timing and spatial errors 
per pose, split between the participants with or without prior yoga 
experience (Experienced vs. Inexperienced). The line graphs above 
the bar charts additionally show a timeline of the participants’ 
motion deviation from the reference. 

A close analysis of errors shows that, in both conditions and for 
all poses, angle error on average amounted 10◦ and that timing 
errors never exceed 2 seconds. Regardless of yoga experience, we 
report no statistical diference for spatial errors (Inexperienced: 
� = −0.314, � = 0.753, Experienced: � = −0.736, � = 0.462) 

8https://www.meta.com/kr/en/quest/accessories/quest-2-elite-strap/ 

or time errors (Inexperienced: � = −1.572, � = 0.116, Experi-
enced: � = −1.051, � = 0.293). Interestingly, mean timing er-
rors with the User-anchored layout are, for inexperienced partic-
ipants, slightly higher than those in the Trainer-anchored layout 
(� : 0.600, �� : 0.159 vs. � : 0.482, �� : 0.114). However, this 
trend is the opposite for experienced users (� : 0.450, �� : 0.115 vs. 
� : 0.525, �� : 0.185). Finally, a further pairwise Wilcoxon signed 
rank test for each pose shows that inexperienced participants train-
ing with specifc poses signifcantly made smaller timing errors in 
the Trainer-anchored layout (Side Plank: � = −2.207, � = 0.027, and 
Down/Up Dog: � = −2.023, � = 0.043). 

7.3.2 User feedback. Figure 13 shows the mean ratings from the 
questionnaire, split by level of yoga experience. Confdence and 
value/usefulness scores were uniformly high, showing no statisti-
cal diferences. Some participants additionally remarked that they 
preferred this type of system compared to their home workout 
experience: "Usually, I have to put too much efort to work out at 
home. So I tend to stick with a couple of familiar videos to work out 
without moving the display. I think I would try new exercises with 
this system." (P3). 

Despite the apparent similar high rankings, we also note that 
inexperienced yoga participants gave higher scores to the Trainer-
anchored layout (confdence: � : 5.000, �� : 1.265 vs. � : 4.167, �� : 
1.472, value/usefulness: � : 6.500, �� : 0.837 vs. � : 5.500, �� : 
0.837) because it made it easier for them to understand the instruc-
tor’s intentions. For example, P10 commented that "Whenever I 
looked at the screen, my body moved naturally to the correct position. 
So, I didn’t have to think about left or right." This could indicate that 
inexperienced participants prefer an active-guiding system. 

On the other hand, 4 of 6 experienced participants stated that 
they prefer the User-anchored layout because it supports a more fex-
ible on-demand learning and observation of details ("I like that I can 
always see the instructor’s postures [...] In Plank Knee To Elbow, I saw 
the instructor fexing his feet, which he forgot to mention in the video 
narration." — P12). Interestingly, while inexperienced participants 
generally positively rated the guidance ofered by Trainer-anchored 
layout, experienced participants reported that the Trainer-anchored 
layout was both physically and mentally more taxing for them 
and that it negatively afected their performance resulting in a sig-
nifcantly higher workload (� = −2.023, � = 0.043). When asked 
why that was the case, we received two types of comments. Some 
participants disliked being nudged toward specifc postures ("I felt 
chased" — P6), while others noticed tracking imperfections. 

We also collected more general feedback about the overall usabil-
ity of the system and on potential distractions caused by the sur-
rounding environment. As in the frst study, participants reported 
about the overall heaviness of the HMD ("It’s too heavy. I wish I 
could practice with smart glasses." — P9), but the newly employed 
strap was efective in stabilizing the HMD, without requiring fur-
ther adjustments from the users. As to possible distractions caused 
by the surrounding furniture, all participants stated that the home-
like settings did not distract them but rather allowed them to relax 
and focus on their workouts ("It was comfortable. It felt like I was 
working out alone at my home. I didn’t notice the household items 
[...] it was nice to see the instructor’s posture more clearly." — P6). 
Finally, several participants reported rotational inaccuracies in the 

https://www.meta.com/kr/en/quest/accessories/quest-2-elite-strap/


CHI ’23, April 23–28, 2023, Hamburg, Germany Jo, et al. 

Figure 12: Performance analysis result: ○a temporal inaccuracy (timing Error) ○b spatial inaccuracy (joint angle error). Mean 
scores (and standard deviation) are displayed on the bars. Wilcoxon signed-rank test results are written at the bottom. 

Figure 13: Questionnaire results about the level of ○a conf-
dence, ○b value/usefulness, and ○c work load. Mean ranking 
scores for the user questionnaires. 

screen placement during the Trainer-anchored layout. In fact, the 
overlay is placed using the instructor’s head orientation as a proxy 
for the direction of the gaze, which is not necessarily the same, but 
that the pose estimation algorithm cannot determine. Despite this 
inaccuracy, however, the users commented that this problem "... 
did not interfere with my performance" (P9), but also would have 
appreciated more "concrete feedback on my movement" (P2). 

7.4 Summary of results 
Three main results emerged from this study: 

(1) FlowAR can be feasibly deployed in home settings without 
being afected by the surrounding environment, and partici-
pants overall scored it high for perceived value. 

(2) Both the performance analysis and the users’ scores seem to 
indicate that inexperienced yoga participants preferred the 
Trainer-anchored layout because it helped them learn, while 
experienced participants preferred the User-anchored layout 
because it imposed fewer restrictions on their movements 
and felt more accurate. 

(3) From the interview feedback, it emerged that one of the main 
usability limitations of FlowAR is related to the bulkiness 
and weight of the HMD. 

8 DISCUSSION 
Combining the results from our studies, we highlight a few emerg-
ing themes. 

New knowledge about which visualization is most suitable 
to keep the motion fow 

The main contribution of this work is to show that FlowAR is 
efective in keeping users in their motion fow while performing 
yoga exercises at home following a training video. This is important 
because maintaining the immersion in a fow is essential in yoga 
for supporting meditation, blood circulation, and prevention of 
physical injuries [29, 53]. FlowAR enables motion fow by displaying 
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the reference video using augmented screen overlay visualizations, 
mitigating the interruptions caused by peeking at the trainer’s 
reference motion displayed on a static screen. 

Our analysis of quantitative data and user preferences supports 
that dynamic screen layouts translate into better motion fow, fewer 
interruptions due to undesired head movements, and higher user 
confdence/satisfaction than static visualizations. This corroborates 
prior work with similar research question [9], but also adds quanti-
tative and expert heuristic metrics to further shed light on the efect 
of even more screen visualizations and the root cause of motion 
fow interruptions. For example, the Circular layout was already 
proposed as an alternative to a fxed screen layout (i.e., our Front 
condition) for training in martial art via a Virtual Reality system [9]. 
For that system as well, no diference emerged between the two 
static conditions, but no clear explanation was ofered about what 
could be the cause. Through our in-depth quantitative performance 
analysis with an expert yoga instructor, we identifed that the im-
mobility of the screens of both the Front and Circular layouts cause 
the look-aways that ultimately distract the users and disrupt the 
motion fow. 

Our studies also reveal that there is no optimal dynamic visual-
ization and that both the User-anchored and the Trainer-anchored 
layouts have trade-ofs. Specifcally, it appears from the interviews 
that experienced users tend to favor layouts that support their ex-
isting workfows, while inexperienced users prefer more guidance. 
Interestingly, this duality of needs for users with diferent expertise 
has already been highlighted for other domains (e.g., arts [79]). Our 
paper presents evidence that this generalizable knowledge also ap-
plies to the specifc yoga domain. Therefore, we see an opportunity 
for a system capable of adaptively and dynamically changing the 
guidance based on the user’s expertise (which might also change 
over time). For example, we could use direct projections on the 
user’s body, like in [66], to provide explicit feedback for beginners. 
In contrast, we could use a third-person view video streaming like 
in [20] or a small avatar in place of a fat-screen overlay [73] for 
users with more experienced proprioception. Similarly, we could 
use adaptive speed control for slowing down the video playback 
speed when the user can’t keep the pace of the instructor, like 
in [11], or providing more subtle or more complex guidance via 
auditory feedback [72] or motion path visualizations, like in [71]. 

Simplicity may support deployability 
The main diference between the proposed FlowAR system and 

previous work is that FlowAR does not require a professional-level 
3D motion capture system [6, 9, 46] nor the need of authoring 3D 
animated ftness tutorials [71, 78]. Instead, FlowAR leverages ready-
available online ftness videos and simple camera-based tracking. 

While prior works showed creative solutions for sports training 
that made good usage of 3D tracking [6, 9], professional-level 3D 
motion capture systems are expensive, require calibration before 
each usage, and are unfeasible to install in the users’ homes. On the 
contrary, FlowAR uses a much more afordable tracking device that 
can be easily deployed in the users’ homes. We demonstrated this 
claim in our second study, showing that FlowAR’s tracking is robust 
enough for deployment in a home-like furnished environment. 

Furthermore, prior work also relied on ad-hoc 3D content for 
the training sessions. Although through this process, the creators 

of the training material have absolute control over every aspect 
of the tutorial, generating 3D animated avatars is typically long, 
expensive, and burdensome [43]. Furthermore, despite best eforts, 
it is unlikely that 3D content creators will ever match the sheer 
number of existing online training videos (as an example, a sur-
vey [77] conducted in 2020 by the Culture&Trends team of YouTube 
reported that there are already 2,000 channels about yoga). On the 
contrary, FlowAR extracts motion information from existing train-
ing videos via a lightweight pose estimation algorithm without 
requiring additional manual labor. 

The simplicity of the tracking and content generation are two 
unique aspects of FlowAR that diferentiate it from prior work and 
would ultimately support a large audience of yogis and sports prac-
titioners who workout at home using training videos.We, however, 
acknowledge that there are examples of sport training systems that 
do not require professional-level 3D motion capture or ad-hoc 3D 
content [11], but these still rely on a fxed display for visualizing 
the instructional videos and constrain the user’s motion. FlowAR, 
in contrast, supports multidirectional workout movements without 
limiting the user’s sight to a fxed location resulting, as we have 
demonstrated in this paper, in less look-aways and improved motion 
fow. 

Opportunities beyond Augmented Reality and Yoga 
The greatest technical limitation and source of user discomfort 

of FlowAR is the bulkiness of the Oculus Quest 2 HMD. Still, at 
the same time, this device ofers the opportunity to go beyond 
augmented reality overlays rendered on top of a live see-through 
video and to immerse users in a completely virtual environment. 
The augmented reality ofered by the device-embedded cameras 
allows users to monitor their bodies and movements. With Virtual 
Reality (VR), this would be possible, but, as shown in previous 
work [71, 78], tracking and 3D reconstruction of the users’ body as a 
digital avatar are also necessary. For example, FlowAR could be used 
with already existing VR yoga applications where the instructors 
are represented by 3D avatars [32, 63, 68] or 360 videos [39], but, 
diferently from these work, it could leverage on the same real-time 
video-based tracking approach [15](BlazePose 3D) to avoid the 
need for authoring time and preparation of the instructional videos. 
Overall, an advantage of choosing VR over Augmented Reality 
is that it enables users to see their own body from an external 
perspective as a 3D avatar [25], as well as to customize or tailor 
their avatars [36]. 

Finally, by constructing completely digital environments and 
allowing people from diferent places to join the same virtual space 
remotely, VR would also naturally lead to the development of group 
training courses with multiple people practicing together, and also 
for sports and ftness exercises diferent from yoga. As shown in 
previous work, these could include sports where the body pos-
ture during the training is important, such as pilates, weight train-
ing [25], golf [26], dance [42], and martial art [23]. We believe that 
FlowAR’s screen layouts and the fndings presented in this paper 
would remain relevant regardless of the choice of implementation 
— Augmented or Virtual Reality — or the choice of training ftness 
videos. 

https://videos.We
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9 LIMITATIONS AND FUTURE WORK 
Despite the positives, FlowAR also presents opportunities for im-
provement. FlowAR heavily relies on the HMD for rendering the 
screen overlays. Heavy and bulky HMDs can cause fatigue for long 
sessions or impede some yoga exercises, for example, where the 
head contacts the foor. Smaller and lighter visors, such as future 
smart glasses or contact lenses, might help address these problems. 
Other technical limitations of FlowAR are related to the accuracy of 
the 3D pose estimation from the video. The accuracy varies depend-
ing on the quality of the input video (e.g., camera angle, lighting 
conditions), occlusions caused by movements, or the direction in 
which the trainer is facing. We note, however, that these limitations 
are inherent to the BlazePose algorithm, and we direct readers to 
prior work that addresses those [45]. Finally, prior work about yoga 
training made a point about the importance of supporting breath-
ing instruction [5] and symmetry indicators [13], which we did 
not account for in our implementation. Future work will need to 
address these points and more (e.g., pauses and other distractions) 
for real-world implementation, perhaps using visual or haptic feed-
back (as in [55, 73]), or even adaptive tracking systems of the user’s 
behavior [11]. 

Our studies also have some limitations that should be consid-
ered when interpreting our results. The relatively small sample size 
(12-16) and homogeneity of the participants (recruited within the 
same institution) should be considered when generalizing the re-
sults. Furthermore, the study was designed to understand a limited 
number of visualizations/conditions with a single motion training 
sequence (constructed by the expert yoga trainer we recruited or 
sampled from a YouTube video). Future work should attempt to 
test our results with a richer set of sequences and yoga poses, as 
well as for other types of ftness exercises beyond yoga. 

10 CONCLUSIONS 
In conclusion, our paper presented FlowAR, a novel augmented 
reality system for home training using commonly available online 
yoga videos. The videos are displayed in an HMD as virtual overlays 
rendered on top of a live camera feed, allowing the user to see the 
training instructions as well as their motion and the surrounding 
environment. We experimented with diferent visualization layouts, 
clustered into two groups (static and dynamic), and used a motion 
capture system to detect the trainer’s motion. We also added a pose 
estimation algorithm that allows generating the trainer’s reference 
motion from a commonly available online video and tested the 
system’s applicability and robustness to noise in a furnished lab. 

Through a multi-stage analysis (heuristic evaluation from an 
expert, spatial and temporal performance analysis with motion 
data, and user feedback), we learned that displaying the visual in-
formation on a static overlay screen interrupts the motion fow 
of the exercise and that dynamic screen layouts are superior to 
static layouts for both user’s performance and satisfaction. We also 
learned that the two dynamic screen layouts (User-anchored and 
Trainer-anchored) are equally efcient, but that the users’ prefer-
ences might depend on individual experience. We conclude that 
the level of prior expertise of the users should be considered when 
determining how much guidance the system should provide. Fu-
ture avenues of research include addressing the problems related 

to the bulkiness of the HMD, providing real-time feedback to the 
users during training, and applying the visualization overlays to 
the training of other indoor sports. 
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A APPENDIX Table 1: 16 symptoms in Simulator Sickness Questionnaire 
(SSQ) [33]. Users rate each symptom on a 4-point scale (0: 
none, 1: slight, 2: moderate, 3: severe) for each symptom. 

No. Symptoms 

1 

No. Symptoms 

General discomfort 9 Difculty concentrating 
2 Fatigue 10 Fullness of head 
3 Headache 11 Blurred vision 
4 Eyestrain 12 Dizzy (eyes open) 
5 Difculty focusing 13 Dizzy (eyes closed) 
6 Increased Salivation 14 Vertigo 
7 Sweating 15 Stomach awareness 
8 Nausea 16 Burping 

Table 2: Items in Intrinsic Motivation Inventory (IMI) [52]. Users rate each item on a 7-Likert scale (1: not at all true, 4: somewhat 
true, 7: very true) for each item. 

Figure 14: Expert Evaluation Material: ○a video and ○b 
Google survey. The video shows each participant’s mo-
tion in yellow 3D character animation overlapped with the 
blue semi-transparent virtual trainer for each screen layout 
condition(A-D). The order of screen layouts is randomized. 

Subscales of IMI No. Items 

Perceived Competence 

1 
2 
3 
4 
5 
6 

I think I am pretty good at this activity. 
I think I did pretty well at this activity, compared to other students. 
After working at this activity for a while, I felt pretty competent. 
I am satisfed with my performance at this task. 
I was pretty skilled at this activity. 
This was an activity that I couldn’t do very well. (Reverse score) 

Value / Usefulness 

1 
2 
3 
4 
5 
6 
7 

I believe this screen layout could be of some value to me. 
I think that doing this screen layout is useful for learning yoga movement. 
I think this screen layout is important in physical training. 
I would be willing to do this again because it has some value to me. 
I think doing this screen layout help me to practice yoga. 
I believe doing this screen layout could be benefcial to me. 
I think this is an important screen layout. 
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