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Figure 1: VirtualWire system overview. Users create circuits in software tools such as Fritzing (1), place real components
on a breadboard with the circuit connections automatically and dynamically realized from the software (2) and, fabricate
permanent versions of their circuit (e.g., PCBs) when completed (3). On the right, the breadboard can be directly transplanted
to the PCB for immediate usage.

ABSTRACT
Assembling circuits is a challenging and time consuming activity
for novice makers, frequently resulting in incorrect placements of
wires and components into breadboards. This results in errors that
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are difficult to identify and debug, and delays that hinder creat-
ing, exploring or reconfiguring circuit layouts. This paper presents
VirtualWire, a tool that allows users to rapidly design and modify
circuits in software and have these changes instantiated in real-time
as electrical connections on a physical breadboard. To achieve this,
VirtualWire dynamically translates circuit design files into physical
connections inside a hardware switching matrix, which handles
wiring across breadboard rows and to/from an embedded Arduino.
The user can interactively test, tune, and share different circuit
layouts for an Arduino shield, and once satisfied, can fabricate the
circuit on a permanent substrate. Quantitative and qualitative user
studies demonstrate that VirtualWire significantly reduces the time
taken for (by 37%), and the number of errors made during (by 53%)
circuit assembly, while also supporting users in creating readable,
space-efficient and flexible layouts.
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1 INTRODUCTION
Circuit design and prototyping activities are being practiced by
increasingly diverse non-expert communities interested in build-
ing tangible interfaces and artifacts [17, 18]. Enabled by the low
barriers to entry and encouraged by the popularity of electronic pro-
totyping platforms such as Arduino1, circuits are now commonly
created and built by a broad spectrum of non-technical makers
and of academic researchers, such those in the TEI community. For
these users, assembling circuits, most typically by placing wires
and components into breadboards to instantiate designs depicted
in learning materials, remains a challenging and time-consuming
activity [33, 34]. The key problems of breadboarding are both simple
and fundamental: components are misplaced and wires are omitted,
connected incorrectly, or inadvertently disconnected. Both novice
and intermediate users are reported to find these errors hard to di-
agnose and debug [5, 34]. These issues impede the ability of novices
to explore and tinker with breadboarded circuits and contribute to
a sense that the technology is intimidating and confusing [2].

To minimize issues associated with tangled wires and fragile con-
nections, researchers have proposed techniques to simplify bread-
boarding, emphasizing qualities such as the speed and ease with
which circuits can be built [6, 19], supporting more complex de-
signs (e.g., multi-layered) [33], and the use of novel substrates and
materials such as paper [25], stickers [10], and printable ink [12].
While these systems typically result in reliable circuit layouts, they
lack the exploratory and iterative qualities of breadboarding: once
circuits are designed in software, they are rendered onto a fixed
substrate and components are soldered [6, 31] or glued [10, 19, 25]
to their surface. Modifications to the design require redoing the
entire process. CircuitStack [33] is a notable exception: it places
the circuit topology on swappable sheets printed in conductive-ink
clamped under a breadboard holding circuit components. While this
approach combines reliable circuit layouts with swappable compo-
nents, making changes to the circuit topology remains a multi-step
and laborious process. It requires redesign on a PC, reprinting
new circuit sheets and, dis- and re-assembly of the breadboard and
clamped circuits.

To better support novices in the breadboarding process, we
present VirtualWire (Figure 1), a technique that borrows from prior
research on virtually simulating electronic components with hard-
ware [14, 28, 35], but instead of focusing on the behavior of specific
1https://www.arduino.cc

components in the circuit, it enables to reconfigure the hardware
connections (e.g., wires) between arbitrary physical components
using software. Although circuit hardware reconfigurations on chip
are possible with technologies that enable gate-level programmabil-
ity, such as system-on-chip (e.g., Cypress2) and field-programmable
gate arrays (FPGAs), these systems require understanding of digital
combinatorial logic, and the usage of highly specialized tools and
hardware description languages (e.g, Verilog or VHDL) that are
very complex and unsuitable for novices. On the contrary, with Vir-
tualWire, users simply create and visually modify circuit layouts in
an electronic design software by directly drawing wires on a virtual
breadboard or an electronic schematic. VirtualWire then physically
instantiates the electrical connections using a programmable analog
switching matrix that supports arbitrary configurations across rows
of the breadboard and to/from an embedded Arduino. Differently
from closely related work [14, 30], the user can therefore connect
components on a breadbaord with unlimited number of "virtual
wires" and in any desired arrangement. Finally, once the user is
satisfied with the circuit, the system can also generate a PCB layout
for fabricating the circuit on a permanent substrate.

This paper presents the design of VirtualWire and demonstrates
its utility via a series of example applications in the form of Arduino
shields. We then validate VirtualWire’s usefulness with quantitative
and qualitative user studies that show it is significantly faster than
traditional breadboarding while also reducing the number of mis-
takes users make and supporting circuit layouts that are perceived
to be simple to parse and read, spatially efficient, and easy to update
and modify.

2 RELATEDWORK
2.1 Circuit prototyping and fabrication
Solderless breadboards have been the standard method of proto-
typing circuits since their introduction in the 1970s [24]. While
their simplicity allows users to create and reconfigure a circuit by
simply plugging components and jumper wires into breadboard
sockets, they struggle to scale. With complex circuits containing
numerous jumper wires, the benefits of breadboards can be over-
powered by their limitations. Quickly finding connection points
for wires becomes more difficult and re-positioning a component
or re-configuring a circuit can require pulling out most of wires
and components and starting over. Prior research has reported that
beginners perceive circuits on breadboards to be delicate [33], and
that miswiring issues are difficult to identify and debug [5].

Complexity and accuracy in circuit construction can be achieved
using Printed Circuit Boards (PCBs), which mechanically support
and electrically connect electronic components using conductive
tracks on one or more layers. PCBs are very reliable, as they form
permanent point-to-point connections between components with-
out wires. However, they are most appropriate for completed de-
signs, as they cannot be easily modified, reconfigured, or debugged
after production. Some research seeks to increase their flexibility—
Pinpoint [29], for example, simplifies PCB debugging via an auto-
matic pipeline that supports actions such as probing signals, discon-
necting components and isolation testing. While this prior work

2https://www.cypress.com
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mainly deals with post-design activities that take place when a
circuit layout has been fabricated and is going through processes
of testing and revision, the current paper focuses instead on the
early stages of prototyping.

Many researchers have also sought to close the gap between
circuit prototyping and fabrication, proposing techniques that com-
bine aspects of the flexibility of breadboards with the reliability of
PCBs. One approach is to fabricate circuits on paper or plastic with
conductive ink, enabling users to hand-draw [19] or print [6, 12] cir-
cuit traces, and apply them to 3D objects [38]. Both PaperPulse [25]
and PEP [23] further exploit printed circuits on paper with multiple
layers, integrated editors, and custom assembly instructions. Cir-
cuit Eraser [21] and CircuitAR [20], focus on techniques to fix or
debug a paper-based circuit, supporting iterative prototyping and
reworking. While these approaches can be used to revise circuit
topology, they still rely on re-printing (or re-drawing) the circuit
layout, require permanent (e.g., soldering or z-tape) methods for
attaching components, and do not scale to sophisticated circuits
with many crossed connections. Modularized approaches such as
stickers [10, 11, 16] solve the soldering problem but limit users to
only pre-made components.

CircuitStack [33] combines the flexibility of solderless bread-
boards with the accuracy and speed of paper circuits. It achieves
this by vertically stacking multiple paper layers containing the cir-
cuit’s wiring (rendered in conductive ink) underneath a breadboard.
Components can be placed on the breadboard without jumper wires,
as connections are realized on the layered paper circuits. The au-
thors demonstrate a working prototype with multiple conductive
layers, and show that the system is easily configurable, accurate
and supports rapid assembly of circuit components. However, as
with other paper circuit techniques, making changes to the wiring
is laborious. It involves redesigning and reprinting the paper stack
and dis- and re-assembling the breadboard.We argue this prolonged
process makes exploration and iteration of different layouts time
consuming, and removes much of the beneficial flexibility of stan-
dard breadboards.

In contrast to previous work, VirtualWire enables the program-
matic configuration of connections between components placed on
a breadboard. This approach allows the topology of a circuit to be
immediately and dynamically reconfigured, without the need for
jumper wires, fabrication, or dis- and re-assembly.

2.2 Programmable hardware for prototyping
Programmable hardware is a large and established research area
in electronics, covering topics such as diverse as gate-level hard-
ware configuration, hardware simulations, and combinational and
sequential logic. Due to the complexity and sophistication of these
topics, research in these areas usually addresses an experienced au-
dience of electronic engineers. Since the primary goal of this paper
is a system that supports novice makers, we omit this literature and
instead refer interested readers to Alphonsus and Abdullah’s com-
prehensive survey [1]. Here, we will address the more relevant body
of literature on programmable hardware systems for prototyping.

Previous work focused on easing the physical construction of
circuits. VirtualComponent [14] allows users to place and tune “vir-
tual” components—physically located on an external module—onto

a physical breadboard to quickly experiment with different circuit
designs by tuning the components’ values. Similarly, VISIR [30]
allows the construction of physical circuits from a remote work-
bench, where fixed components placed on an external bank can
be routed to different locations on a remote breadboard. However,
neither system supports the possibility of drawing arbitrary num-
ber of wires to connect components. Scanalog [28] supports the
construction of analog circuits using high-level modules built into
the hardware (using a field-programmable analog array - FPAA)
that can be reconfigured and controlled in software, but there are
major limits of the type and number of components that can be
instantiated inside the FPAA chip (four configurable analog blocks).
Proxino [35] does the exact opposite, by enabling user to create a
virtual prototype for a circuit by blending the input or output value
from a physical proxy (e.g., sensor or actuator) into a simulated
virtual circuit. Specifically, with Proxino the input sensors or the
actuators are physical proxies plugged into the hardware, while
the circuit topology (i.e., the connections between components)
only exists in software and behaves following a SPICE simulation.
VirtualWire is different from all these approaches by allowing a
reconfiguration of physical connections through software. Finally,
Visible Breadboard [22] allows users to place components on a
12x-scale breadboard, and to construct a circuit without wires by
linking any point to cardinally adjacent points by drawing the
connections directly on the board surface with their fingers. While
highly interactive and flexible, Visible Breadboardmandates manual
configuration via touch; its large size makes using standard compo-
nents challenging; and it does not support arbitrary connections, as
each socket can only be connected to those cardinally adjacent to
it. These factors make it difficult to produce and reconfigure circuit
designs using the system.

Breadboards are not the only way to prototype circuits. Lit-
tleBits [4], DataFlow [7], Bloctopus [26] and NET Gadgeteers [32]
all support circuit construction using modular building blocks. De-
spite many individual differences, these systems share the common
objective of lowering the threshold for early-stage prototyping
through pre-assembled modules with built-in capabilities that can
be easily connected together to yield functional circuits.While these
systems enable blocks of complex functionality such as cameras and
displays, they also limit users to a strict set of pre-manufactured
modules. Other research aims to simplify the circuit design process.
For example, Trigger-Action-Circuits [2] automatically produces cir-
cuits and assembly instructions based on high-level descriptions of
desired behavior, and AutoFritz [15] proposes auto-complete func-
tionality to assist in the design of breadboarded circuits, based on
a database of previously created common circuits. Finally, Circuit-
Style [8] is a teaching tool that peripherally enforces best-practices
and guidelines for implementing circuit prototypes. While these
systems help with the design of circuit layouts, they still require
users assemble circuits manually using the traditional process of
plugging wires into a standard breadboard.

3 VIRTUALWIRE
VirtualWire is a novel tool for prototyping circuits that allows users
to insert components on a physical breadboard and to connect them
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Figure 2: Step-by-step walkthrough from prototyping in Fritzing ( a○, b○) or Eagle ( c○, d○) to fabrication of PCBs ( e○). More
details in the text.

without physically placing wires. Instead users can design the cir-
cuit layout using computer software (e.g., Fritzing3 or Autodesk Ea-
gle4) to specify virtual wires that describe how components should
be connected. As connections are placed or updated, the virtual
circuit layout is automatically updated on the physical breadboard
in real time, producing real electric connections matching the vir-
tual ones, creating a fully functional circuit. The final circuit design
can be saved, shared, or automatically prepared for fabrication as a
PCB.

VirtualWire’s reconfigurability is enabled by a switching matrix
that dynamically handles connections between any two points of
the breadboard and between the breadboard and the pins of a user-
programmable Arduino UNO embedded within the hardware. This
switching matrix, in contrast to similar technology used in prior
work [14, 22, 30], allows users to create unlimited and arbitrary
connections among the components on the breadboard and/or the
Arduino pins, without limiting the topology of the circuit. Fur-
thermore, all modifications to the circuit design are immediately
recognized and reflected in hardware, without requiring physical
re-wiring or physical dis- and re-assembly tasks [33].

3.1 Design rationale
To establish constraints around an appropriate breadboard size, we
extracted metrics relating to the size and complexity of circuits of
typical Arduino projects in two common maker resources: the Ar-
duino Project Book [3] and the online Fritzing projects repository5.
These resources have been used as source of typical circuit designs
in prior work [5, 15]. We manually examined the projects in the
Arduino book, and obtained circuits from the Fritzing repository
by scraping the website and removing duplicate entries, corrupted

3https://fritzing.org
4https://www.autodesk.com/products/eagle/overview
5https://fritzing.org/projects

files, and files not containing any Arduino. The dataset is available
online6.

The Arduino book contains 15 projects with an average of 7.6
(SD: 3.7) unique electrical nets, 9.3 (SD: 4.7) wires, and 6.5 (SD:
3.6) components (Arduino included) with an average number of
3.35 connected pins (SD: 1.13) per component. Our Fritzing dataset
has 4316 projects containing an average of 12.1 (SD: 12, median:
9) electrical nets, 16.9 (SD: 21.5, median: 11) wires, and 11.7 (SD:
16.4, median: 7) components. Each component has on average 3.4
(SD: 3.2, median 2.8) connected pins. Projects in both sets included
both analog and digital components and operated with the typical
voltage levels supported by the Arduino platform (3.3V and 5V).

Based on this data, we derived design requirements for Virtual-
Wire. To match the maker communities it is intended for, it supports
both Fritzing-style pictorial diagrams and electrical schematics,
and both analog and digital circuits capable of interfacing with
an Arduino—hence 3.3V or 5V logic levels, and a maximum op-
erating current of about 50mA (Arduino digital pins can handle
up to 40mA). We opted to embed an Arduino as a representative
platform commonly used in maker communities—it can be pro-
grammed with standard tools and any pin can be connected to
any of the breadboard nets. Finally, reflecting the small size of the
circuits in the repositories (nets ≤ 12, wires ≤ 17), and in line
with prior work [36, 37], we selected a breadboard with 16 rows (16
unique electrical nets) that can be linked by an unlimited number
of interconnections (wires).

3.2 Workflow and system capabilities
In this section, we describe VirtualWire’s capabilities with two
linked walk-through examples. In the first, a user is building an
oscillator circuit using a 555 chip in astable mode. She uses two

6https://github.com/makinteractlab/Dataset_CircuitsFritzing
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resistors and one capacitor to calibrate the frequency and duty-
cycle of the generated PWM signal to 10 Hz with a 50% duty-cycle.
An LED and a current-limiting resistor are used to visualize the
output blinking patterns. The user places the physical components
on VirtualWire’s physical breadboard, then uses a Fritzing file to
place matching components on the virtual breadboard—a custom
component containing a 16-row breadboard over an Arduino UNO
as in Figure 2 a○. After checking that the virtual components’ lo-
cations in Fritzing mirror those on the physical breadboard, she
connects the components with wires in software. The 5V and GND
pins of the embedded Arduino are used for power supply.

Once ready to test the circuit, the user starts up the VirtualWire
software and specifies the input design file. This is then parsed
and transmitted to the VirtualWire hardware, which renders all
the connections automatically. On inspecting the design in Fritzing,
the user realizes she made a transcription error and rectifies it by
moving a wire to an adjacent pin (Figure 2 b○); after saving her
design, VirtualWire automatically updates the hardware’s state.
She then launches the Arduino IDE, writes some test code and
explores the behavior of her prototype.

In the second example, a more experienced maker familiar with
schematics, is creating an analogous circuit, but working with elec-
trical schematics instead of a Fritzing diagram. Using Autodesk
Eagle, he draws a schematic of the oscillator circuit (Figure 2 c○).
After exporting the schematic file as a pinlist (a ASCII file contain-
ing a list with pads and pins, with directions and names of the nets
connected to the pins), he loads it into the VirtualWire software
which automatically computes the position of all components on
the breadboard via an algorithm, and visualizes them graphically on
the screen (Figure 2 d○). The user is guided to place each component
on the breadboard by on-screen instructions designed to ensure it
matches the location of its virtual counterpart (Figure 2 d○, right).
Any subsequent changes in the design file are reflected in how the
breadboard rows and Arduino pins are connected.

Finally, both users are satisfied with their prototypes. To finalize
the circuit, they use the VirtualWire software to export a PCB layout
file that can be opened in Eagle. The layout file is shaped as an
Arduino shield, with pre-made plated holes for headers and sockets.
It contains the connections between the pins in the final circuit.
They then run Eagle’s auto-router to create physical tracks, export it
for fabrication and ultimately render it for testing using conductive
ink on a FR-4 substrate (e.g., using the Voltera machine7) or milling
it onto a copper substrate for final production (see examples in
Figure 2 e○). While the PCB requires manual assembly to solder
headers and sockets, individual components do not need to be
placed or soldered. Instead, the breadboard with the components
can be removed from the VirtualWire box and placed as-is on top
of the fabricated PCB for immediate use.

4 IMPLEMENTATION
VirtualWire is composed of an open-source8 physical augmented
breadboard and PC software that controls it and displays a user
interface.

7https://www.voltera.io
8https://github.com/makinteractlab/VirtualWire

Figure 3: VirtualWire hardware components. The bread-
board module connects via standard pluggable headers and
is removable.

4.1 Hardware
The hardware (Figure 3) consists of a controller board and a remov-
able (or swappable) mini-breadboard module. As in prior work [37],
the breadboard module contains 8 rows and 10 columns (split in
two banks) with a standard 100mil pitch (2.54mm) between holes. It
is 33 mm by 21 mm and 7 mm high. It can support up to 16 distinct
electrical nets that can be connected together arbitrarily. The bread-
board module is mounted on top of a custom PCB that connects to
the controller board via standard pluggable pins and headers. The
controller board houses a micro-controller (Teensy 3.2), a wireless
bridge (ESP8266), sub-circuitry to handle both 3.3V and 5V logic
levels, a user-programmable Arduino UNO, and a switching matrix.
The system is powered by a 12 V DC power supply, and is enclosed
in a 10.5 x 10.5 by 4 cm box.

The switching matrix is composed of three analog 16x16 cross-
point arrays chips (AD75019JPZ) in cascade mode controlled with
TTL logic by the Teensy microcontroller. Two chips (U1 and U2)
are used to connect any of the 16 rows of the breadboard to any
of the pins of the embedded Arduino UNO, including its 14 digital
pins, 6 analog pins, and pins for power management (3.3V, 5V, GND,
VIN, IORED, RESET and AREF). These connections have a typical

Figure 4: Block diagram of the switching matrix: U1 and U2
provide connections between any row in the breadboard and
any pin of the embedded Arduino. U3 provides a double-
path from any row of the breadboard to any other row.

https://www.voltera.io
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on-resistance of 150Ω, hence capable of handling a maximum cur-
rent of 33mA at 5V (hence about 160mW, where the AD75019JPZ
chip is capable of dissipating up to 1W in total). These ratings are
compatible with the Arduino’s maximum rated current for digital
pins (about 40mA). The third chip (U3) is used to handle connec-
tions between any two rows in the breadboard. This is achieved
by shorting the input and output sockets of the chip, so that each
row of the breadboard can simultaneously act both as input and
output. For example, the diagram in Figure 4 shows how rows 11
and 16 are connected – internally the chip routes the input of row
11 to the output of row 16, and vice-versa. With this configuration
we enable two distinct routes between any two points of the bread-
board, lowering the on-resistance to 75Ω and doubling the current
threshold. This enables the use of external power supplies on the
breadboard to drive components with higher current requirements,
such as DC or servo motors.

4.2 Software
The VirtualWire software is a collection of scripts managed by a
Java application that monitors the currently loaded input design
files – these can be either Fritzing project files or Eagle schematic
files. VirtualWire extracts wire connections from circuit diagrams
generated with Frtizing by parsing its standard utf-8 encoded XML
files. Wires in Fritzing files are sequences of lines connecting spe-
cific breadboard locations so we achieve this simply by tracing each
line to its start and end point. This results in a list of connections
that are formatted into a series of commands in JSON format and
sent as packets of up to 1024 bytes to the VirtualWire hardware
wirelessly or over serial at 115200 bps. When working with Fritzing,
VirtualWire presents no on-screen UI—users just work with Fritzing
as normal, but any change they save to their circuit is immediately
and automatically pushed to the VirtualWire breadboard.

Eagle schematics succinctly store circuit topology and nets. How-
ever, they do not indicate how components should be placed on
a breadboard, the information required by the VirtualWire hard-
ware. To create this concrete representation, we developed a solver
in Python that automatically assigns each component in a Eagle
schematic to a valid position on the breadboard. The solver works
for a wide (and extensible) range of components: resistors; capaci-
tors; inductors; potentiometers; diodes; LEDS; buttons; servos; bat-
teries and; ICs. It requires each be labelled following a strict naming
convention based on the initial of the component type followed by
a unique number (e.g., R1 and R2 should be the component names
used in a circuit with just two resistors).

The solver then operates as follows: it loads a pinlist from an
Eagle file, internally converts it to a set of electrical nets and de-
termines if the circuit can fit on the VirtualWire breadboard. If
not, the user is informed and the process halts. If the circuit fits,
the solver then generates a concrete routing. It starts by assign-
ing DIP packages that straddle the breadboard, then goes through
all other nets and randomly assigns them to the remaining rows.
These simple heuristics ensure placement of components that have
adjacent pins (e.g., ICs) are valid and helps distribute the remaining
components evenly across the breadboard, avoiding clusters. The
random assignment of nets to rows also exploits the small size of
the current VirtualWire hardware: we assume components with

wire leads (e.g., resistors, capacitors, etc.) can be freely positioned
anywhere on the breadboard, regardless of where their other lead(s)
are placed. Once all nets are placed on the breadboard, the solver
computes the location of each component and wire, and internally
stores them as descriptors in JSON format. These descriptors are
then sent to the VirtualWire hardware and also visualized on the
PC screen as a Fritzing style pictorial circuit diagram.

VirtualWire can also export circuits as Eagle’s proprietary brd
files, containing the layout for an Arduino shield and the necessary
holes to house the system’s removable mini-breadboard. Our soft-
ware works by injecting the layout file with the connections for
the electrical nets and by assigning them to specific pins. This file
can then be used to produce a PCB with any conventional method
(e.g., milling, printing).

5 EXAMPLE USAGES
This section contains examples of applications that demonstrate Vir-
tualWire’s capabilities and uses. The goal is to provide an illustrative
and grounded description of how VirtualWire can support makers
in their circuit design, development and construction practices. It is
organized into four key activity types: building, exploring/tuning
circuits and, finally, integration with existing practices.

5.1 Building circuits from scratch
VirtualWire enhances the basic process of constructing new circuits
with both analog and/or digital components. For example, Figure 5
shows a battery powered micro servo motor (SG90) controlled using
a 5K potentiometer—moving the wiper results in movements of
the servo motor’s shaft. This is achieved by connecting the wiper
pin of the potentiometer to one of the Arduino’s analog pins, and
then mapping the read value to the duty-cycle of the PWM (Pulse-
Width Modulation) pin connected to the servo. This simple example
highlights VirtualWire’s ability to deal with external power sources
and mixed-domain signals.

A more complex example, adapted from an online repository9,
uses a dual operational amplifier (LM358), six resistors, one ca-
pacitor, one LED, and a 3.5mm audio jack (10 components and 10
wires in total) to visualize an audio signal (Figure 6). The input
audio signal is acquired through the audio jack, low-pass filtered
(in hardware) and fed into an analog pin of the Arduino. In software,
9http://fritzing.org/projects/
op-amp-low-pass-filter-for-35-audio-jack

Figure 5: The Fritzing circuit used to power and control a ser-
vomotor using a potentiometer (left) and its physical layout
in hardware (right). Letters show the components’ mapping.

http://fritzing.org/projects/
op-amp-low-pass-filter-for-35-audio-jack
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Figure 6: Fritzing pictorial circuit diagram and VirtualWire
breadboard realizing a sound level visualizer circuit.

these readings are again mapped to the duty-cycle of a PWM signal
that controls the LED brightness. The resultant system varies the
brightness of the LED in real time according to the audio volume.
We use this more sophisticated example to illustrate that Virtu-
alWire is capable of supporting typical circuits showcased in the
maker community’s online repositories, involving processes such
as reading analog data, hardware filtering, and PWM output.

5.2 Exploring variations
Circuit designers often consider possible alternative hardware con-
figurations. VirtualWire simplifies exploring these different options.
For example, a user may wish to learn about the operation of a
component through hands-on practice. A quad 2-Input NAND gate
chip (SN74LS00N), for instance, offers the opportunity for students
to learn about logic gates by practicing different layout configura-
tions. In Figure 7, two SPDT switches are used to control the logic
input for the quad NAND gate chip, and the output is fed into an
LED that turns on when the logic output is high (e.g., 5V), or off
when low (0V). We explored different wiring configurations to build
AND, OR or XOR gates. As a result, the LED lights up in different
situations: only when both switches are on when configured as an
AND gate; when at least one switch is on for an OR gate and; when
the two switches have different states for a XOR gate. Note that
each configuration can be saved and loaded at will, enabling quick
switching between alternatives.

A more practical example involves digital modules that support
various complementary features, such as different communication

Figure 7: VirtualWire breadboard with two switches and
quad 2-Input NAND gate (left). Other images show wiring
configuration for AND, OR and XOR gates. Note that the
wires on the breadboard (left) are not interconnections; they
simply connect the large switch PINs to the breadboard.
Wire reconfigurations are highlighted in orange.

Figure 8: Fritzing pictorial circuit diagrams showing the
wiring required to connect an OLED display via SPI or I2C
protocols. Change between these protocols is a software-
only process with VirtualWire. Wire reconfigurations are
highlighted in orange.

buses (e.g., UART, SPI, I2C). Switching between these options typi-
cally involves physical re-wiring, in addition to software changes,
making testing out the various options laborious. VirtualWire sim-
plifies this process by providing a fully virtual environment for
establishing the different connections required for each option—
Figure 8 shows how this works for the UG-2864HSWEG01 OLED
display, featuring communication through either SPI or I2C.

5.3 Rewiring for tuning
Beyond the key feature of enabling breadboarding without physical
wires, VirtualWire also supports rapid and seamless adjustments. In
fact, after a design file has been linked to the system, any changes to
the virtual electrical nets are automatically detected and pushed to
the hardware. This feature can also be used to optimize specialized
circuit design sub-tasks, such as picking the value of components
from among a limited set of alternatives. For example, Figure 9
illustrates tuning a low-pass filter by adjusting the values of the
resistors (R) and capacitors (C) in its RC network. The breadboard
has four resistors (330Ω, 15kΩ, 200kΩ, 510kΩ) and three capacitors
(1nF, 10nF, and 100nF) arranged to support tuning a filter that takes
a 5V 50% duty-cycle PWM signal and produces a steady voltage
level. By placing this set of components on the physical breadboard,
a user can repeatedly rewire the circuit, exploring 12 possible filters

Figure 9: VirtualWire breadboard with various resistors and
capacitors to support tuning a filter (left). Center and right
show Fritzing pictorial circuit diagrams with the connec-
tions for different filters. Bottom row shows original signal
(left) and filtered outcomes (center and right).Wire reconfig-
urations are highlighted in orange.
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Figure 10: Frizting pictorial circuit diagram for an Arduino
to act as ISP for an AVRmicro-controller (left); Diode blink-
ing circuit for the AVR micro-controller (right). Center
shows VirtualWire breadboard for both circuits; switching
between these functions can be achieved simply by loading
different Fritzing sketches.

to rapidly identify an optimal solution (in this case, 510kΩ and
10nF) that will output a steady 2.5V signal.

5.4 Integration with traditional workflows
Finally, VirtualWire integrates with design and fabrication tools
widely adopted in the maker community. Circuits can be designed
using Fritzing or Autodesk Eagle, with VirtualWire software run-
ning in the background to observe circuit changes. Once complete,
users have the option to print custom PCBs with their tools of
choice. For example, Figure 2 shows the oscillator circuit from the
walk through rendered into printed and milled Arduino shields.
We also note that VirtualWire allows designers to rely on software
tools and practices typically used for collaborative work with digital
contents. Thanks to Fritzing and Eagle, VirtualWire supports undo
and redo operations. Circuits can also be easily shared between
makers and iterations can be tracked using versioning software
such as git.

VirtualWire can also serve as a chip-programmer tool. For exam-
ple, Figure 10 (left) shows VirtualWire’s internal Arduino set up as
an In-System Programmer (ISP) for flashing the popular 8-bit AVR
microcontroller ATtiny8510. This setup allows a user to write code
in the Arduino IDE and flash it directly to the ATtiny chip without
any other hardware. Code on the ATtiny can then be tested by
simply loading a new circuit design file and observing the results—
Figure 10 shows a circuit layout for testing code that blinks an LED.
Switching between flashing code to the ATtiny and running code
on the ATtiny is rapid and requires no physical re-wiring.

6 TECHNICAL EVALUATION
We characterized the performance of the system by measuring the
electrical characteristics of connections comprised of 1 to 15 wires
in series (i.e., each wire connects two adjacent breadboard rows).
The resulting documentation of stray capacitance and associated
resistance highlights the system’s performance under various use
cases. We considered two representative cases of Arduino use: a
static configuration (5V direct current from an external power sup-
ply), and a dynamic configuration (5V PWM at 490.20 Hz with
50% duty cycle as default on Arduino UNO). Both sources were
applied at row 1 and measured at all the other rows. Table 1 shows
the collected values for voltage, current, resistance, power, power

10https://www.microchip.com/wwwproducts/en/ATtiny85

loss (Lp = 10 ∗ loд10(Pout /Pin )), as well as rise- and fall-time for
the PWM signal. Static measures were taken using a Fluke 177
multi-meter , while dynamic measures were recorded using the
signal generator and oscilloscope tools within the Digilent Analog
Discovery 2.

Table 1: Electrical characteristics of connections made be-
tween 1 and 15 wires in series. Input at 5V, 50mA.

Wires Vout I R ∆R P Lp Rise Fall
mV mA Ω Ω mW dB us us

1 5016 49.6 101 248.8 -0.02 0.56 0.13
2 5016 26.1 193 91 130.9 -2.81 0.94 0.49
3 5016 17.9 281 88 89.8 -4.45 1.2 0.84
4 5016 13.6 369 88 68.2 -5.64 1.4 1.07
5 5016 11 458 89 55.2 -6.56 1.58 1.24
6 5016 9.2 546 88 46.1 -7.34 1.7 1.36
7 5016 7.9 634 88 39.6 -8.00 1.83 1.47
8 5016 7 722 88 35.1 -8.52 1.89 1.52
9 5016 6.2 809 87 31.1 -9.05 1.97 1.63
10 5015 5.6 897 88 28.1 -9.49 2 1.64
11 5015 5.1 985 88 25.6 -9.90 2.05 1.68
12 5015 4.7 1074 89 23.6 -10.26 2.06 1.7
13 5015 4.3 1161 87 21.6 -10.64 2.09 1.77
14 5015 4 1248 87 20.1 -10.96 2.09 1.72
15 5015 3.8 1334 86 19.1 -11.18 2.03 1.71

Avg. 5015.6 11.7 720.7 88.0 58.9 -7.7 1.7 1.3
SD 0.5 12.1 393.5 1.2 60.9 3.2 0.5 0.5

Figure 11: Linearity of power and conductance.

Results show an average resistance per connection of 88Ω, and
that the total resistance is linearly proportional to the number of
wires. Figure 11 shows that conductance (G = 1/R) is linearly
proportional to the power consumption, or, in other terms, that
resistance is inversely linearly proportional to power. Both rise-
and fall-time show that a timed signal is substantially unaffected by
routing, thus making VirtualWire particularly suitable for digital
circuits which work with TTL logic and have low current require-
ments. To demonstrate this, we connected a servomotor control-
signal wire at row 16 and were able to control the motor from the
PWM input supplied at row 1 and traversing all the other rows.

7 USER EVALUATIONS
We conducted two separate studies to assess the efficiency and
overall experience of prototyping with VirtualWire. We opted for

https://www.microchip.com/wwwproducts/en/ATtiny85
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two separate evaluations with distinct groups of users rather than
a combined study because of the lengthy prototyping sessions
required.

7.1 Study 1: Quantitative evaluation
The first study compared objective measures of performance be-
tween VirtualWire and traditional breadboarding. We conducted
a quantitative evaluation with 12 participants aged 21-33 (M: 24.1,
SD: 3.37, 4 females, 8 males), all undergraduate and graduate stu-
dents from various engineering departments and industrial design.
All students had previous experience using Arduino and physical
computing on traditional breadboards. Six participants self-rated
themselves on a scale of 1 to 7 as advanced makers (M: 4.8, SD: 0.9)
and six as novices (M: 2.5, SD: 0.8). Each session lasted approxi-
mately one hour, and participants were compensated with 10 USD
in local currency.

After a brief demonstration of VirtualWire, participants were
asked to perform four circuit-assembly tasks using either Virtu-
alWire or traditional jumper wires on a breadboard. The study
followed a balanced within-subject repeated-measures design with
two consecutive tasks performed in each of the two conditions. Cir-
cuits were chosen from the example applications described earlier
in the paper in order to present tasks of varying complexity. These
were 1) a blinking LED using a 555 timer chip; 2) wiring an OLED
display to an Arduino UNO via I2C and SPI protocols; 3) building
AND/OR logic gates using a NAND gate chip; and 4) controlling a
servo motor with a 5K potentiometer. For each circuit, participants
were provided with a printed image showing the complete Fritzing
diagram of the finished circuit.

Participants were given a maximum of ten minutes to complete
each circuit, otherwise the task was recorded as a failure. At any
time participants could submit their circuit to an experimental
moderator, who immediately checked it for correctness. If correct,
the task finished. If incorrect, participants were informed there was
one or more errors (but not what they were) and asked to continue
the task. Participants were able to submit circuits multiple times
for each task up until the expiry of the ten minute time limit.

All times at which participants’ submitted circuits to be checked
were logged. If a submitted circuit was correct, the time it was
submitted was considered to be the task completion time. The total
number of checks requested was also recorded as was the overall
success or failure of each circuit completion task. In order to record
mistakes and errors at a finer granularity, all study sessions were
recordedwith a downwards facing camera positioned directly above
the VirtualWire board or breadboard. Additionally, all VirtualWire
sessions were recorded with a screen capture system. Errors in this
material were defined as placing a component or wire in a physical
or virtual position that deviates from the provided Fritzing diagram.
In order to extract this information, two raters examined all videos
according to a pre-agreed classification scheme inwhich errors were
logged as either self-detected errors (e.g., corrected independently by
the participant) or at-check errors (e.g., present in a circuit submitted
for check) and involving either missing or misplaced wires and
components or inverted components. To alleviate bias and correct
for mistakes in rater performance, the lists of errors recorded by

the two raters were compared and the differences examined and
resolved into a unified final set that both raters endorsed as accurate.

7.1.1 Results. The results revealed a wide range of differences in
performance. Firstly, two circuits (8.3%) in the breadboard condition
were not completed, while all circuits in the virtual wire condition
were successfully completed. A Fisher exact test [27] indicated
this difference was not significant (p=1.0). Shapiro-Wilk tests indi-
cated data for task completion time was normally distributed and
a subsequent t-test showed that VirtualWire led to significantly
more rapid task completion times (p<0.001) than standard bread-
boarding: a mean of 206 seconds (SD 45.3) vs 328.6 seconds (SD
75.4). The number of checks requested by users was not normally
distributed and transforms did not resolve this. Accordingly, we
analyzed data with non-parametric Wilcoxon tests. No significant
difference was observed between the mean of 1.29 (SD 0.4) checks
requested in the VirtualWire condition and the mean of 1.5 (SD 0.48)
checks requested in the breadboard condition. Error counts were
also not normally distributed, but responded to a power transform
(λ = −0.825). A t-test on the normally distributed transformed data
indicated that VirtualWire led to significantly fewer errors than
breadboarding (p=0.027). We present a detailed breakdown of errors
according to the classification scheme used by the raters in Table 2.

Table 2: Breakout of errors by occurrence and type.

Error-type Self-corrected errors Errors at check
Baseline VirtualWire Baseline VirtualWire

Missing Wire 0 0 5 0
Missing Component 0 0 0 0
Inverted Component 2 0 2 0
Misplaced wire 8 10 25 11
Misplaced Component 4 4 12 2

Total 14 14 44 13

To provide a more detailed depiction of performance in this
complex study task, Figure 12 plots the duration of each trial and
highlights the times at which check requests, self-detected errors
and at-check errors occurred. The shorter task times and reduced
number of at-check errors in the VirtualWire condition are imme-
diately evident, as are the uneven distributions that result in the
failure of the raw data to satisfy normality assumptions. Together
with the formal statistical analysis, this visualisation provides sup-
portive evidence for the claim that VirtualWire can improve not
only the speed with which novice users can produce breadboarded
circuits but also the accuracy and correctness of their work. It is
particularly noteworthy that VirtualWire reduced the number of at-
check errors, or those that a user failed to catch without a specific
prompt. We suggest this type of error may be particularly chal-
lenging for a user to detect and debug during real circuit creation
activities, when there may be confusion as to when errors were
committed, which components they involve and even whether they
lie in software or in hardware.

7.2 Study 2: Qualitative Evaluation
To complement the quantitative findings, we performed an interview-
based qualitative studywith 12 new participants aged 20-27 (M: 22.6,
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Figure 12: Visualization per user of the breadboarding sessions with four different circuits, in the VirtualWire and baseline
condition. Errors are visualized at the time of occurrence.

SD: 2.6, 3 females). Participants used VirtualWire to assemble three
circuits on a breadboard, and then to compare these sessions with
their prior experience in building circuits. Participants consisted of
undergraduate students, graduate students or recent graduates from
various engineering departments and industrial design. All partic-
ipants had some prior experience with physical computing and
Arduino, with six participants self-rating themselves as advanced
makers (M: 5.6 out of 7, SD: 0.5) and six as novices (2.1 / 7, SD: 1.1).
The study lasted one hour, and participants were compensated with
10 USD in local currency.

The study followed a simple format: after a brief demonstration
of VirtualWire and a warm up session to familiarize themselves
with the system (max 10 minutes), similarly to the quantitative
study, participants were asked to build three circuits of various
complexity and with different numbers of wires: 1) rewiring logic
gates, 2) connecting a 7-segment display to the Arduino, and 3) con-
necting the OLED display to the Arduino with the I2C and SPI
protocols. The task order was balanced among participants.

7.2.1 Results. Interviews were transcribed and analyzed by two re-
searchers using open and axial coding methods. Three key findings
emerged, relating to the utility of VirtualWire, the ease with which
it could integrate with existing workflows and the applications and
domains it might be particularly useful for.

It terms of utility, all participants, regardless their level of exper-
tise, praised the system’s ability to reduce the clutter and fragility
of physical breadboards: "it is physically difficult to place wires on
a crowded breadboard, but in VirtualWire its so much easier (P4)."
This was useful for several reasons. Firstly, it was much easier to
read the breadboard as they reported they could see at a glance
what wires are going where. This not only sped up circuit assembly
and debug, but also enabled them to better optimize their use of
space: "there is much more space on the breadboard that can be used
(P4)" compared to a traditional breadboard. Participants also noted
they could "work on the software and spend less time on the physical
breadboard (P11)" , which hints at improved integration between the

software and hardware aspects of a physical computing project [5].
P3 highlighted the value of this integration: "From a beginner’s
perspective, the process of drawing the circuit [and] transferring it to
a breadboard seems disconnected and burdensome. With this system,
the steps are better connected, helping beginners be more confident in
prototyping."

Most participants noted that VirtualWire integrates well with
normal prototyping workflows, rather than disrupt or change prac-
tices. For example, P6 stated that "it is especially nice when you
must rewire one or multiple components" and you can use the mouse
and graphical tools to tidy the wiring. P1 also commented that the
possibility of saving the wiring at any stage of completion boosted
his confidence. P9 went further observing that "the undo and redo
features in the software are a huge advantage . . . I can rely on the
software to remember the individual steps I made wiring the circuit."
We note these features are part of standard software environments
and the innovation in VirtualWire is to extend their reach from PC
based design tools out into the actual physical breadboard a user
is working on. VirtualWire also allows participants to seamlessly
produce a final PCB board layout ready for production: "when I
transfer from breadboard to PCB I take a lot of pictures as a reference.
With [VirtualWire] I don’t think I’ll need to do that (P3)" .

Finally, based on their past experiences, participants speculated
on several possible applications for VirtualWire, including educa-
tional training (P2, P5, P7), testing components and sensors (P1, P5,
P6, P9), and exploring different variations of a circuit (P10, P11).
Other participants compared VirtualWire with Autodesk Tinker-
CAD11, a Fritzing-like tool with a built-in simulator. P10 appreciated
VirtualWire moves beyond such tools as while "in TinkerCAD, there
is a simulation feature, here you can try for real."

11https://www.tinkercad.com

https://www.tinkercad.com
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8 DISCUSSION AND LIMITATIONS
This paper presented VirtualWire, highlighted its potential uses and
described two studies that illustrate how these translate into con-
crete benefits to users. Specifically, the quantitative study indicates
that VirtualWire is substantially faster than traditional prototyp-
ing with breadboards, showing a substantial 37% improvement in
completion times. This is due, at least in part, to the fact that Virtual-
Wire also leads to significantly fewer errors (53%)—users who make
fewer mistakes are likely to complete tasks more quickly. Indeed,
a detailed examination of errors shows a strong reduction in the
number of mistakes that are not independently identified—they are
only isolated after an explicit prompt (reported as at-check errors
in the study). The qualitative study corroborates these results. Par-
ticipants stated they were able to quickly familiarize themselves
with VirtualWire and create neat, space-efficient designs. They also
appreciated the ability to apply standard productivity techniques
from the digital domain, such as undo/redo and saving intermedi-
ary versions, to a physical wiring task. Participants speculated this
would enable them to spend less time on physical breadboarding
and more on programming, a shift they viewed would be partic-
ularly advantageous in domains such as education and in tasks
such as tinkering or exploring and testing alternatives. Together,
these results provide strong evidence that VirtualWire can improve
on the ability of novices to rapidly, effectively and meaningfully
prototype circuits.

Despite these positives, we note there are numerous opportuni-
ties for technical improvement of the VirtualWire prototype. Per-
haps the most substantial limitation of system relates to the size
and electrical properties of the breadboard—an issue VirtualWire
shares with closely related prior work [14, 36, 37]. Although the
system was designed with the mean circuit size of a typical maker’s
project in mind (see Design Rationale section), VirtualWire cannot
currently support large circuits. Study participants reported that
they expected to make more efficient use of the breadboard space
when wiring in software, but ultimately the system has an upper
bound of 16 distinct electrical nets. This limitation stems from use of
the 16x16 AD71519 analog crosspoint-array switch. The crosspoint
switch is also the root cause of VirtualWire’s parasitic capacitance
between adjacent rows (65pF) and the resistance associated to each
connection (88Ω per wire). Although this number is higher than
the resistance of jumper wires used with breadbaords (typically
less than 1Ω), it is similar to that reported for CircuitStack [33] —
between 1Ω and 104Ω depending on the length of the connection.
With the current implementation, a user needs to work around
these constraints by, for example, dividing a complex circuit into
modules that can be designed, tested and fabricated separately on
different mini-breadboards. If higher current is needed, the input
voltage to the system can be raised (up to 12V for a maximum
dissipation of 1W), physical wires can be placed on top of the bread-
board or multiple connections between points on the board can be
realized using parallel routes. Resolving these issues may also be
possible with alternative implementations based on technologies
such as a larger crosspoint-array switch, FPGAs or FPAAs; future
work should explore these options.

Further limitations relate to the level of assistance provided by
the system. VirtualWire cannot determine whether the topology of

a circuit is correct, automatically detect wrongful placement of com-
ponents [9, 22, 36], or provide suggestions for how to complete a
circuit [15]. In fact, the system does not currently detect or indicate
whether components were placed in the suggested breadboard loca-
tions. Developing and studying an integration with such advanced
functionality, via the Fritzing and Eagle platforms common to both
VirtualWire and these prior projects, is a clear next step for this
work. Additionally, the PCBs fabricated by VirtualWire are limited
in their utility: they are large and have a fixed Arduino shield form
factor. While this is convenient, future work should enable better
integration of designs with prototyping and fabrication tools for
customized boards [39]. Finally, future work should also investigate
the impact of VirtualWire on long-term learning and how it might
facilitate moving from prototypes to products [13].

9 CONCLUSIONS
This paper presents VirtualWire, a system that allows users to
rapidly create and modify circuit layouts using standard existing
software tools (e.g., Fritzing, Eagle) and have their designs and
changes immediately, dynamically and automatically realized as
electrical connections on a real breadboard. The goal is to allow
users to combine the quick, exploratory qualities of circuit bread-
boarding with real components with the clarity, convenience and
edit-ability of working with digital representations of circuit topol-
ogy.We describe the design rationale, present the systems’ technical
capabilities and showcase example uses. Our quantitative and quali-
tative evaluations show that VirtualWire reduces the time taken and
errors that occur during circuit assembly, while also improving de-
sirable qualities such as the "neatness" , legibility and compactness
of circuit layouts and integrating seamlessly with existing high-
value digital functionality such as undo/redo. Finally, we highlight
the technical limitations of the system and discuss opportunities
for future research, such as improved integration with prior work,
and implementation of more comprehensive PCB fabrication and
customization options.
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