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Figure 1:Wizard-of-Oz approach and experimental tasks. (a) The participants’ VSLs were controlled by a human operator behind
a partition to simulate semi-autonomous supernumerary limbs. (b) Basic Control Task: In this task, participants used both their
own arms and the VSLs to press buttons. (c) Factory Task: Participants used their own arms and the VSLs to collaboratively
insert found objects into the appropriate holes.

Abstract
Using supernumerary multi-limbs for complex tasks is a growing
research focus in Virtual Reality (VR) and robotics. Understanding
how users integrate extra limbs to achieve shared goals is crucial
for developing efficient supernumeraries. This paper presents an
exploratory study (N=14) investigating strategies for controlling
virtual supernumerary limbs with varying autonomy in VR object
manipulation tasks. Using a Wizard-of-Oz approach to simulate
semi-autonomous limbs, we collected qualitative and quantitative
data. Results show participants adapted control strategies based on
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task complexity and autonomy, affecting task delegation, coordi-
nation, and body ownership. Based on these findings, we propose
guidelines—commands, demonstration, delegation, and labeling—to
improve multi-limb interaction design by adapting autonomy to
user needs and fostering context-aware experiences.
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1 INTRODUCTION
Leveragingmultiple supernumerary limbs to perform complex tasks
is becoming a popular research domain in application areas such
as Virtual Reality (VR) and robotics [50, 56–58]. To harness the
potential of supernumerary limbs in addressing complex tasks,
prior research has predominantly employed fixed control mappings
for operating the supernumerary limbs, where specific commands
are assigned to the movement of particular body parts [65, 70].
However, while fixed control mappings can be effective for certain
tasks, they lack the flexibility required for dynamic interactions in
complex environments, especially when supernumerary limbs are
given a level of autonomy.

To facilitate the exploration of dynamic control mappings, it
is crucial to understand how users would effectively coordinate
these semi-autonomous supernumerary limbs with their own limbs
to expand human capabilities and address the unique challenges
of interaction design and user experience [19] in a multiple su-
pernumerary limbs setting. In this study, we examine the use of
supernumerary limbs within a VR environment to simulate in-
teractions that could inform future applications. VR provides a
valuable platform for studying and evaluating the integration of
supernumerary limbs, offering a controlled, immersive space to sim-
ulate complex scenarios that are difficult to replicate in real-world
robotic applications [3, 41, 64]. This environment allows users to
engage in a “suspension of disbelief [52],” which supports the study
of embodied interaction in novel body configurations. In this pa-
per, we deal with “virtual supernumerary limbs (VSLs)” to explore
VR-based interactions rather than real-world robotic applications.
Although there are clear differences between VR and real-world en-
vironments, insights gained from VR-based studies can potentially
inform future developments not only of VR applications, but also
physical mechanical limbs, as shown in previous work [62, 82].

Particularly, this paper focuses on how VSLs, when equipped
with different and increasing degrees of autonomy, can assist users
in managing non-repetitive, multi-layered tasks in VR environ-
ments. Instead of simply mapping another limb (e.g. foot move-
ment [67]) or executing predefined commands [66], autonomous
VSLs in our study learn, adapt, and act semi-independently to re-
spond to changing task requirements and conditions. This adaptabil-
ity is especially crucial for scenarios involving real-time decision-
making and task variations, where the user needs more responsive
control than what fixed mappings can provide [67]. This shift from
fixed mappings to autonomous, context-sensitive control can elicit
unique user interaction strategies, highlighting the influence of
different levels of autonomy in VSLs on user behavior.

To this end, we implemented a Wizard-of-Oz setup to simulate
autonomous VSLs that respond to user input and task complexity.
Integrating these autonomous capabilities allowed us to freely ex-
plore the design space in breadth and depth without restrictions
imposed by limitations of today’s technologies. Our study focused
on key research questions surrounding interaction strategies and
system autonomy of multiple VSLs control: RQ1: What control

strategies do users employ when interacting with semi-autonomous
VSLs in different scenarios? RQ2: How does the level of autonomy
in VSLs affect users’ ability to manage tasks? and RQ3: How do
users’ perceptions of embodiment and control change with level of
autonomy?

To capture a comprehensive understanding of user interaction,
our study blended qualitative and quantitative research methods.
Qualitative data were gathered through think-aloud and semi-
structured interviews, providing insights into the participants’
thought processes. Quantitative data on task performance and the
awareness of embodiment were collected to quantify the effective-
ness of different control strategies and their impact on user per-
formance and perception. Furthermore, we analyzed operator (or
wizard) reaction patterns to validate the operator’s behavior, ensur-
ing their actions were consistent and adhered to predefined patterns.
This analysis supports the conclusion that our task performance
results are based on participant behavior, unaffected by operator
errors. This mixed approach revealed several key findings: users
favored task delegation to the VSLs for repetitive or lower-priority
actions, adjusted their strategies to switch between manual con-
trol and automation depending on task complexity, and developed
more efficient coordination as they grew familiar with the system.
Additionally, users found object labeling and categorization to be
crucial in managing VSLs effectively, and they experienced shifts in
embodiment based on the level of system autonomy. These findings
underscore the need for adaptive control mechanisms that help
users balance attention, streamline task-switching, and enhance
the sense of embodiment, informing design recommendations for
future systems employing multiple VSLs.

2 RELATEDWORK
2.1 Virtual Reality and Robotic Body
Recent advancements in robotics and VR technologies have enabled
novel interactions where users can experience the detachment, at-
tachment, and exchange of body parts, even while retaining their
natural limbs. For instance, Iwasaki et al. [40] introduced the con-
cept of a “detachable body”, where a third and fourth robotic limb
can be seamlessly attached and detached, allowing users to operate
these limbs remotely across different locations. Additionally, re-
search on supernumerary robotic limbs has explored task-specific
customization of limb end-effectors, enhancing adaptability and
functionality in varied contexts. VR and wearable Shape-Memory
Alloys (SMA) have further expanded these possibilities by enabling
shared body experiences, where two individuals can collaboratively
control a single body(e.g., [66, 75, 91]. For example, Saraiji et al.
created a system where wearable robotic arms are remotely oper-
ated by another person, facilitating a shared embodiment [35, 66].
Takizawa et al. extended this exploration into VR, investigating
how different perspectives impact the shared body experience [75].

Building on these developments, VR provides unprecedented op-
portunities to explore more abstract states of being a digital cyborg,
such as inhabiting an invisible body [44], existing as separated body
parts [43], or even duplicating oneself [50]. These immersive expe-
riences push the boundaries of body ownership and self-perception,
offering new avenues to understand how users adapt to technologi-
cally augmented bodies. Recent studies providing the experience of
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acquiring virtual robotic limbs [24, 39]. Arai et al. [3] has demon-
strated that augmenting a participant’s avatar with an extra body
part in a virtual environment can evoke the sense of embodiment,
leading participants to perceive the virtual limb as an extension of
their own body.

Inspired by these findings, our research leverages VR technol-
ogy to investigate how the addition of multiple semi-autonomous
VSLs influences user interaction. To further quantify the effects,
we employed an additional questionnaire to measure the sense of
agency and ownership [3].

2.2 Supernumerary Robotic Limbs
Research on supernumerary robotic limbs (SRL) has explored vari-
ous forms of augmenting the human body [34, 63, 65, 81], such as
robotic legs [59], fingers [34], and arms [81]. Our research focuses
on virtual supernumerary limbs, which add extra limbs to enhance
functionality in a VR environment.

Initially, SRL were developed for industrial applications, such
as assisting workers in construction and assembly tasks [56–58].
The field has since expanded to include designs like robotic tails
for balance [47, 53] and additional limbs for complex tasks [18, 63,
77, 86]. For example, Maekawa et al. [47] introduced a wearable
robotic tail to aid in balance, showing its potential in physically
demanding activities.

Control mechanisms for SRL have been a focal point of inves-
tigation, with various methods proposed to enable intuitive and
effective operation. Techniques such as remapping body motions
(e.g., foot or shoulder movements) [65, 67, 70] and utilizing brain-
computer interfaces for direct limb control [60] have been explored.
Despite the promise of these approaches, the majority of studies rely
on fixed mapping schemes that limit adaptability in dynamic envi-
ronments. Moreover, there is a noted lack of comprehensive user
studies, with many systems validated through proof-of-concept
demonstrations involving single users [65, 80, 81]

To address these limitations, our research investigates the inter-
action dynamics involved in controlling multiple sumernumeary
limbs within a VR environment s) using a non-fixed mapping
scheme for supernumerary arms capable of different levels of au-
tonomy. In our study, participants will utilize voice and gestural
commands to dynamically switch control between two VSLs while
performing semi-realistic tasks. This approach aims to provide
new insights into flexible and responsive multiple VSLs control
for practical usages, contributing to a deeper understanding of
human-machine interaction in increasingly complex contexts.

2.3 Mapping Control Strategies in SRL
Existing research has primarily focused on fixed-mapping control
schemes, where SRL are governed by pre-determined mappings,
such as proprioceptive interfaces like foot pedals [67]. While these
methods have demonstrated effectiveness in controlled environ-
ments, they struggle to accommodate the dynamic nature of real-
world scenarios, where user intentions and tasks may shift rapidly.
Similarly, another study on artificial limb substitution added two
robotic arms controlled by leg movements, expanding the user’s
capacity to four arms [66]. However, such systems still lack the
flexibility required for real-time adaptation, particularly when users

must manage multiple limbs simultaneously. Similarly, efforts to
enhance physical capabilities through SRL, such as the develop-
ment of robotic tails for balance augmentation, underscore their
potential but fall short in addressing the complexities of dynamic,
multi-limb control [47]. Additionally, studies on wearable robotic
arms examined user-preferred interaction styles but focused on
controlled environments, leaving the need for flexible, real-time
control largely unaddressed [51].

Our study design is inspired by existing research on user-preferred
interaction methods and the control of multiple VSLs. Building on
these foundations, our research shifts the focus to non-fixed map-
ping, enabling users to dynamically manage and seamlessly switch
control among multiple VSLs in real-time.

2.4 Wizard-of-Oz Methodology in
Supernumerary Robotic Limbs Research

The Wizard-of-Oz (WoZ) methodology is widely used in human-
computer interaction research to simulate autonomous systems,
enabling the study of user interactions before full prototypes are
available [2, 84]. For example, Diederichs et al. used a WoZ vehi-
cle to explore human interaction with AI-driven cars, providing
insights into user trust and adaptability [16]. Similarly, Hu et al.
developed “Wizundry,” a platform for simulating speech-based in-
terfaces with multiple wizards, facilitating the study of complex
human-AI collaboration [33]. In SRL research, Muehlhaus et al.
used the WoZ approach to simulate semi-autonomous functionality,
analyzing user strategies for controlling additional limbs [51]. This
methodology has also been applied to such contexts as automated
vehicles [28], offering insights into user acceptance and trust. This
approach is particularly valuable for SRL research, allowing re-
searchers to investigate user behavior and interaction patterns in
controlled environments. By leveraging WoZ setups, researchers
can collect rich data that informs the design of SRLs and other ad-
vanced robotic systems, bridging the gap between early prototypes
and user-centered design.

Our research builds on these insights by leveraging the WoZ
methodology to simulate varying levels of autonomy in VSLs in a
VR environment. This approach enables us to systematically study
user behavior, control strategies, and embodiment under controlled
conditions, mitigating the technical constraints of fully autonomous
systems. By focusing on VR, we extend the applicability of WoZ in
SRL research, providing foundational insights into user interaction
patterns while acknowledging the need for future validation in
physical settings.

3 DESIGN AND IMPLEMENTATION
This section outlines the design considerations and implementation
details of our Wizard-of-Oz setup for VSLs in a VR.

3.1 Design Considerations
In HCI, shared manipulation in virtual environments has been ex-
plored through frameworks like the Level of Manipulation (LoM)[5].
In our VR study, we implemented “distributed control across dif-
ferent LoM to form a cohesive entity” [73] using a four-arm setup,
where two VSLs were controlled by the participant and two by the
human operator. This setup allowed both to independently control
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separate LoM, collectively contributing to the operation of a single
virtual entity for coordinated interaction.

The control mechanism in our study mapped the user-controlled
avatar’s limbs and the VSLs to separate controllers, with both the
participant and operator wearing VR headsets. The participant
directly controlled the avatar’s limbs, while the operator managed
its VSLs. Non-arm-related actions, such as walking, were excluded
to maintain focus on arm manipulation.

To address the concerns of over-reliance on human operators in
Wizard-of-Oz setups [26], we introduced random error injections and
delayed responses in the operator-controlled limbs to simulate the
unpredictability of imperfect autonomous systems [61]. These er-
rors were designed to mimic real-world limitations in autonomous
control, requiring the participant to adapt to system imperfections.
Additionally, during critical tasks, the operator introduced tempo-
rary loss of control in certain limbs to simulate failures in the system,
forcing the participant to find alternative strategies, thus enhancing
the realism and complexity of the simulated autonomy.

Since both the participant and operator were responsible for
controlling a total of four virtual limbs for the same avatar, the
question of how virtual vision will be shared in a collaborative
setting is an important consideration in the system design. To facil-
itate seamless collaboration, we synchronized the visual experience
within the virtual environment. Both the participant and opera-
tor views were anchored to the same avatar, ensuring a unified
first-person perspective. The participant’s head movements con-
trolled the viewpoint, minimizing motion sickness and maintaining
alignment between the two users’ actions.

The participant’s Unity interface was shared with the operator
via, allowing the operator to monitor actions in real-time. The oper-
ator could also view the participant’s perspective directly through
the VR headset, ensuring effective coordinated interaction within
the virtual environment.

3.2 Implementation
We used the Unity platform to implement our study. This setup
enabled both the participant and a human operator to share a
single virtual environment, with their real-time interactions syn-
chronously reflected on the same avatar. Our setup was based on
two Oculus Quest 3 head-mounted displays and controllers. The
application was developed using Unity version 2022.3.7f1 and main-
tained a stable frame rate of 90 Hz throughout the experiment. Each
pair of devices was connected to a dedicated computer via USB,
and both computers were physically connected to the same local
network to minimize latency [20, 37]. This allowed us to reduce
the delay between the participants actions to 5ms. In the virtual
environment, the participant and the human operator were simul-
taneously tethered to a single anthropomorphic avatar.

To avoid biases, the participant and the human operator were
positioned two meters apart in the same room but separated by
a physical partition, ensuring the participant was unaware of the
operator’s presence, as shown in Figure 1. This setup allowed the op-
erator to clearly hear the participant’s instructions while remaining
undetected, thereby maintaining the integrity of the Wizard-of-Oz
methodology. To enhance the realism of autonomous interaction,
we implemented blinded control conditions, where the operator

received incomplete task information, simulating limited system
awareness. This forced the participant to adjust for the system’s im-
perfect decision-making. Combined with error injection and control
delays, this approach captured user behavior in scenarios that mim-
icked real-world autonomous system challenges. We selected the
“Photon Unity Networking” (Photon PUN) framework to implement
the task environment due to its robust capabilities in supporting
multiplayer interactions. Photon PUN’s integration with Photon
Cloud, a software-as-a-service (SaaS) solution, facilitated the devel-
opment of our multiplayer environment. Additionally, we utilized
an on-premises Photon Server to host the task locally, which further
minimized network latency and ensured real-time responsiveness
between the participant’s actions and the system’s feedback.

4 EXPERIMENTAL METHOD
The aim of this study is to explore interaction strategies for con-
trolling multiple semi-autonomous VSLs in non-fixed mapping VR
scenarios. To ensure the tasks reflect real-world use cases for super-
numerary limbs, we designed two VR tasks representing distinct
categories of interaction: targeted reaching named Basic Control
Task and object manipulation named Factory Task.

4.1 Experimental Conditions and Procedure
4.1.1 Participants. We invited 14 participants with prior VR expe-
rience (6 female, 8 male; M = 25.6 yrs; SD = 7.9 yrs; no color vision
deficiencies) to participate in the study. This sample size is consis-
tent with standards in HCI research [10, 51]. Participants with VR
experience were selected to avoid distractions from learning con-
trols [76]. 7 out of 14 participants used VR regularly in professional
settings, while the other 7 used it for entertainment or gaming.

4.1.2 Experimental Conditions. We employed a within-subjects
experimental design. All participants completed the experiment in
both autonomy conditions— low-autonomy level and high-autonomy
level. These two autonomy levels, as theoretically outlined by Kim
et al. [42], provide the understanding of how different degrees of
robot independence influence human-robot interaction. Detailed
descriptions of autonomy levels, including participant instructions,
system capabilities, and operational guidelines, are provided in
Appendix A. The autonomy settings, which encompass descrip-
tion, capabilities, and role, were designed following the practical
framework proposed by Lima et al. [15]. To minimize any potential
fatigue or learning effects, we counterbalanced the order of condi-
tions presented to the participants with a break between each task
and condition.

To formulate the differentiation of the two autonomy levels, we
classified plausible instructions for VSL control into several cate-
gories informed by principles from robot learning and multi-agent
coordination frameworks [4, 22, 38, 90]. They start with two high-
level categories: action instructions andmeta-action instruc-
tions. Action instructions are instructions issued by the participants
that specify how the VSLs should operate or proceed. These include
Command Instructions, which involve direct physical actions,
such as pressing or rotating objects [38]; Demonstration Instruc-
tions, involving participant-led imitation, derive from the robot
learning from demonstration (LfD) paradigm, where robots repli-
cate observed behaviors [4]; and Delegation Instructions, which
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issue abstract commands for autonomous planning, using condi-
tional generation and reinforcement learning to enable systems
to infer strategies for multi-step tasks [90]. Meta-instructions, on
the other hand, do not specify a course of action but are used to
simplify or speed up communication between the operator and the
VSLs. For example, these include Labeling Instructions, which
allow participants to use properties like color or size to specify or
indicate objects, hence simplifying naming conventions for future
action commands, which is important for contextual recognition in
robotic task sequencing [22]. We used this classification to define
the two autonomy levels:

Low-autonomy level: At this level, the VSLs require explicit, step-
by-step guidance from participants, responding to instructions cate-
gorized as Command, Labeling, or Demonstration instructions.
Each command triggers a single action from the operator (control-
ling the VSLs) without independent planning or task abstraction.
For example, a Command instruction like “Press here” results
in simple, discrete movements reflecting immediate task execu-
tion [38], i.e., pressing a button. A Labeling instruction, e.g., “This
is a red ball,” involves identifying and categorizing objects based
on specified properties, consistent with robotic object classification
frameworks [22]. A Demonstration instruction, such as rotat-
ing an object by 90 degrees, requires the operator to replicate the
participant’s real-time actions, exemplifying robot learning from
demonstration [4]. This level limits the VSLs to reactive behaviors,
entirely dependent on participant guidance.

High-autonomy level: At this level, the VSLs demonstrate ad-
vanced capabilities, including object recognition, multi-step task
execution, and autonomous planning. The key difference in this
level is the inclusion of Delegation instructions, such as “Sort all
blocks by colour” prompts the operator to autonomously identify
object properties, develop sorting plans, and execute multi-step
sequences, reflecting decentralized task planning strategies [90].
By incorporating planning and abstraction, this level provides en-
hanced efficiency and flexibility for managing complex tasks.

4.1.3 Procedure. The study procedure began by collecting demo-
graphic information, including participants’ age, gender, VR profi-
ciency, prior VR gaming experience, and any color vision deficien-
cies. Participants were then briefed on the experiment’s purpose,
and written informed consent was obtained. Participants were ex-
plicitly informed that the VSLs responded to specific verbal com-
mands and demonstrations using hand gestures.

Next, we provided participants with detailed descriptions of
the two autonomy levels (see Appendix A) and verbally explained
each component, covering the description, capabilities, and role. To
ensure consistency, the operator’s actions followed predefined rules
(see Appendix B), developed during pilot studies to standardize
responses across participants. In the low-autonomy condition, the
operator performed tasks step-by-step based on explicit participant
instructions, whereas in the high-autonomy condition, tasks were
executed as single actions based on participant commands.

Participants were then assisted with putting on the VR headsets
and provided with controllers. Before beginning the main tasks,
they engaged in a 5-minute warm-up exercise based on the relaxed
think-aloud protocol (RTA) [29, 30].

This exercise encouraged them to verbalize their thought pro-
cesses, enabling us to gather richer qualitative data on their decision-
making and interaction strategies. Throughout the experiment, par-
ticipants were encouraged to continue thinking aloud, describing
their actions, reasoning, and adjustments during the tasks.

The experimental tasks followed a sequence of Basic Control
Task → Factory Task, conducted once at the low-autonomy level
and again at the high-autonomy level. Each task required the use
of both avatar’s limbs (controlled by the participant and VSLs, and
participants described their strategies and reasoning throughout
the tasks. To prevent potential biases, the order of autonomy levels
was counterbalanced.

After each autonomy level, participants removed their VR head-
sets and completed an embodiment questionnaire. Following the
Factory Task, we conducted a semi-structured interview focusing
on their experience of managing the VSLs, their perceptions of task
performance under different levels of system autonomy, and their
subjective awareness of embodiment effects. The entire experiment,
including the briefing, training, data collection, and interviews,
took approximately 50 minutes. No monetary compensation was
offered to participants for their involvement.

4.2 Experimental Tasks
The tasks were designed to explore participants’ control strategies
to employ the VSLs in VR, requiring coordination, precision, and
timing. They required participants to simultaneously and collabo-
ratively use the avatar’s limbs and VSLs.

4.2.1 Basic Control Task. The first task in our study (Figure 2(a))
is a typical "reaching" task, commonly used in VR object manip-
ulation [69]. Participants completed basic coordination through
the action of three-dimensional reaching out to a button, a funda-
mental skill in remote robotics manipulation [31]. The reaching
task, chosen as the first task for its straightforward objective, sin-
gular focus, and absence of distracting elements. It provides a con-
trolled environment to examine basic multiple-limb coordination.
As demonstrated by Guterstam et al. [79], reaching tasks are crucial
for exploring how users integrate the VSLs into their body schema.

The task included four stages, with an increasing number of lit
buttons at each stage. In stage 1, only one button was lit; Vstage 2
had two; and progressively stage 4 had four buttons. The partici-
pants were asked to use both their avatar’s limbs and SLs to press lit
buttons to turn them off. The task was considered complete once all
lit buttons were pressed in each stage, with no repeated attempts or
iterations within the stages. Performance metrics such as task com-
pletion time and error rate were recorded to assess how effectively
participants managed the tasks across different stages. Participants
had the freedom to choose which limb to use for each button, but in
the later stages, with three and four buttons lit, participants needed
to engage both their avatar’s limbs and VSLs simultaneously to
complete the task.

4.2.2 Factory Task. The second task is a fast-paced robotic-control
task (Figure 2(b)) involving grasping, rotating, and reaching [49].
It builds on the earlier reaching task by adding precision, timing,
and coordination requirements. To ensure the task reflected natural
behavior, it requires bilateral coordination, involving both limbs for



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al.

Figure 2: Two tasks used in the user study: the two avatar’s limbs were controlled by the participants, while the VSLs were
controlled by a human operator. (a) Basic Control Task: Participants used the avatar’s limbs and VSLs to simultaneously actuate
illuminated buttons in a sequence. (b) Factory Task: One hand grasps a falling target, while the other rotates a Shape Sorter to
match and insert the target into the correct hole based on shape and color.

simultaneous or alternating movements. Specifically, we focused
on asymmetrical bilateral coordination, where each limb performs
a distinct action, such as one hand grasping while the other rotates
or positions an object [27]. Our task design aligns with key insights
from Zhang et al. [89], who emphasize the role of SRLs in high-
pressure, multitasking environments such as industrial settings.
This taskwas chosen as the second for incorporating these elements,
reflecting real-world applications of SRLs in enhancing human
performance in repetitive, demanding tasks.

The task mechanism involved a Shape Sorter, a cubic object with
four sides, each containing differently shaped holes. Two Shape
Sorters were placed on the table, with the same set of shapes on
each, but arranged with different color associations and orienta-
tions. While the shapes on both sorters were identical, the colors
corresponding to each shape varied between the two sorters. For
example, a triangular hole might be on the green side of one sorter
and the yellow side of the other.

The task structure featured ten objects, with matching shapes
and colours of the Shape Sorter faces. The objects were dropped one
by one on the table every three seconds (Fig. 2). The participants
were asked to insert the objects to the shape sorter matching the
shape (e.g., such as triangles, cylinders, and cones) and color. Par-
ticipants needed to grab the falling target, rotate the Shape Sorter
to align both the shape and the color, and insert the target into
the corresponding hole. This design tested participants’ ability to
coordinate the avatar’s limbs and VSLs simultaneously, managing
the tasks of grasping, rotating, and inserting the target under time
pressure. Participant’s earned points for each correct insertion, and
task completion time and accuracy measured performance.

4.3 Experimental Setup
We conducted the experiment in a 2.5 x 3.5 meter laboratory room,
which was divided into two sections by a partition to ensure that the
participant was unaware of the human operator’s presence, main-
taining the integrity of the Wizard-of-Oz setup. A GoPro camera
recorded the participant’s activities for later analysis. The partici-
pant wore a VR headset and provided voice commands, which the

operator could hear, but the operator remained silent and did not
communicate directly with the participant during the experiment.

4.4 Experimental Data
4.4.1 Qualitative data. We audio and video recorded the think-
aloud session and the answers to the interviews as qualitative data.

4.4.2 Performance. Wemeasured the participants’ performance us-
ing two variables: task completion time and error rate. Specifically,
for the Basic Control Task, the task completion time was calculated
from the moment the button illuminated until the participant suc-
cessfully actuated the button. For the Factory Task, performance
was assessed by measuring the time taken for each action, from
grasping the target to placing it into the correct hole, along with the
number of accurate target insertions. To avoid biases, participants
were not shown their scores during the experiment.

4.4.3 Embodiment Experience. As ameasure of the degree of shared
virtual body experience, we utilized the Avatar Embodiment Ques-
tionnaire (AEQ) to assess evaluation of embodiment [25]. The par-
ticipants completed the questionnaire at the end of tasks associated
with each level of system autonomy (i.e., after completing the low-
autonomy level, and again after completing the high-autonomy
level). This approach mirrors the two critical stages identified in [3],
which is pre- and post-learning stages. Participants removed their
VR headsets to complete the questionnaire.

5 RESULTS
In this section, we present both quantitative and qualitative findings,
focusing on embodiment, control and task management strategies
against different levels of autonomy of multiple VSLs.

5.1 Quantitative Findings
Figure 3 outlines our quantitative findings in terms of task com-
pletion time, error rate and participants’ response to the Avatar
Embodiment Questionnaire (AEQ). Since the data did not follow a
normal distribution, we used the Aligned Rank Transform (ART)
test to perform non-parametric comparisons.
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Figure 3: The averages for low-autonomy level and high-autonomy levels in (a) the task completion time in the basic control
task and factory task; (b) the error rates in the basic control task and factory task; (c) the embodiment questionnaire. * indicates
p < .05 and ** indicates p < .01.

As shown in Figure 3(a), participants on average took signif-
icantly longer time to complete the tasks in low-autonomy level
compared to high-autonomy level in both Basic Control task (𝑧 =

−1.05, 𝑝 < 0.05) and Factory task (𝑧 = −2.09, 𝑝 < 0.05). For the error
rate, we did not observe a statistically significant difference between
the autonomy levels in the Basic Control task (𝑧 = −0.75, 𝑝 = 0.44).
However, as shown in Figure 3(b), in the Factory task, error rate in
the low-autonomy level was significantly higher compared to that
of high-autonomy level (𝑧 = −2.93, 𝑝 < 0.01)

As shown in the Figure 3(c), results from the embodiment ques-
tionnaire administered after each autonomy level revealed statisti-
cally significant differences (using Wilcoxon–Mann–Whitney test)
to several questions. Statistically significant differences were ob-
served in several key questions: Specifically, Q1: “I felt as if the
virtual extra limbs/arms were my limbs/arms” (𝑝 < 0.05); Q2: “It
felt as if the virtual extra arms/limbs I saw were someone else’s”
(𝑝 < 0.05); Q3, “It seemed as if I might have more than two
limbs/arms” (𝑝 < 0.05); Q4, “It felt like I could control the vir-
tual extra arms as if they were my own arms” (𝑝 < 0.05); Q6, “I
felt as if the movements of the virtual extra arm were influencing
my own movements” (𝑝 < 0.05); Q8, “I felt as if my arms were
located where I saw the virtual extra arms” (𝑝 < 0.05). As a trend,
the participants tend to feel a higher sense of body ownership (Q1,
2), a sense of agency (Q4, 6), and a sense of self-location (Q8) after
low-autonomy level compared to that of high-autonomy level.

To validate the reliability of our quantitative measures, we an-
alyzed completion times for different tasks and how they relate
to instruction types to ensure their actions were consistent and
adhered to guidelines ( Figure 4). Since the data conforms to a nor-
mal distribution, we employed a One-Way ANOVA to compare the
operator’s average reaction time for instructions.

Across the study, participants issued a total of 672 commands.
Specifically, Command - 192 times, Labeling - 160, Demonstra-
tion - 176, and Delegation - 144 times.

For Command Instructions, shorter commands (1–3 seconds)
resulted in an average operator reaction time of 𝑀 = 2.50 (𝑆𝐷 =

0.31) seconds, while longer commands (4–6 seconds) required signif-
icantly more time at𝑀 = 4.53 (𝑆𝐷 = 0.40) seconds (𝑧 = −3.21, 𝑝 <

0.01). Similarly, for Labeling Instructions, shorter commands (1–2

seconds) corresponded to a reaction time of𝑀 = 2.02 (𝑆𝐷 = 0.23)
seconds, whereas longer commands (3–5 seconds) took𝑀 = 3.84
(𝑆𝐷 = 0.31) seconds. For more complex Demonstration Instruc-
tions, the operator’s reaction time also scaled proportionally with
command length. Commands lasting 3–4 seconds elicited an aver-
age reaction time of𝑀 = 4.52 (𝑆𝐷 = 0.39), while those lasting 6–8
seconds increased significantly to 𝑀 = 8.03 (𝑆𝐷 = 0.48) seconds
(𝑧 = −3.52, 𝑝 < 0.001). Lastly, Delegation Instructions exhibited
the longest reaction times, with shorter commands (2–3 seconds)
averaging 𝑀 = 3.46 (𝑆𝐷 = 0.30) seconds and longer commands
(6–8 seconds) reaching𝑀 = 9.04 (𝑆𝐷 = 0.61) seconds.

Notably, as shown in Figure 4, Command, Demonstration, and
Delegation Instructionswere consistently followed by an operator
reaction, with reaction times roughly aligning with the length of
the commands. In contrast, Labeling Instructions were followed
by shorter reaction times since no physical movement was required.
Additionally, under Low Autonomy, Delegation Instructions did
not trigger any reaction as this feature was unavailable, while in
high Autonomy, Delegation Instructions consistently resulted in
reactions of equivalent durations.

5.2 Qualitative Findings
We conducted an inductive thematic analysis [6] to explore how
participants controlled the VSLs and how their experiences varied
with different autonomy levels. This analysis aimed to understand
participants’ interaction strategies, focusing on how they balanced
manual and autonomous control, as well as the challenges of manag-
ing multiple VSLs. The analysis was conducted by two independent
coders, ensuring diverse perspectives and reducing individual bias.
To enhance consistency, inter-rater reliability was measured using
Cohen’s Kappa (𝜅 = 0.74)..

Following Braun and Clarke’s framework [7], we began by famil-
iarizing ourselves with the data through a review of all interview
transcripts to identify key elements of participants’ feedback. In
the initial coding phase, we assigned descriptive labels to relevant
passages, focusing on body ownership, agency, task delegation, la-
beling strategies, and managing multiple tasks. Independent coding
was followed by collaborative discussions to refine and consolidate
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Figure 4: The participant-issued instructions, including Command Instructions, Demonstration Instructions, Delegation In-
structions and Labeling Instructions, along with the WoZ operator’s reaction times to these four instruction types. A single
colored segment may represent multiple instructions of the same type. It also compares the reaction times across two distinct
autonomy levels for both the Basic Control Task and the Factory Task.

codes into initial categories reflecting participants’ strategies for
handling task complexity and adapting control methods.

We refined and grouped the codes into higher-order themes as
patterns emerged, such as “Body Ownership, Agency, and Con-
trol Embodiment” and “Control Strategies and Their Perceived
Performance”. These themes helped us build a framework for un-
derstanding participants’ experiences in adapting to multitasking
demands with VSLs. Our iterative coding approach consistently
identified key themes such as “Balancing Cognitive Load and Task
Complexity” and “Trust, Ownership, and Control Embodiment”
across participant data. We followed reflexive thematic analysis
principles [7], allowing ongoing reflection and refinement to shape
the analysis.

The following sections outlines the key themes that emerged
from participants’ experiences, providing insights into how they
adapted their control strategies and perceptions across different
tasks and levels of autonomy.

5.2.1 “It felt weird, like they were someone else’s arms” —
Body Ownership, Agency, and Control Embodiment. Having
two additional limbs was an unusual experience for participants,
with many (N = 8) initially describing a sense of disconnection.
As P11 remarked, “It felt weird, like they were someone else’s arms”,
especially when the VSLs didn’t fully align with their intended
movements. However, participants were surprisingly able to de-
velop a sense of autonomy over time: “At first, they felt awkward,
but the more I used them, the more natural”, noted P08.
Sense of Body Ownership: 8 out of 14 participants felt a stronger
connection to the VSLs when they had direct control, particularly
during low-autonomy level. “When I was guiding the arm, it made

me feel more real”, P02 said. This manual control reinforced their
sense of ownership, particularly in VR settings, where repeated
interactions allowed participants to adapt to the virtual embodiment
of the arms, rather than perceiving them as physical robotic systems.
“The more I used it, the more natural it felt”, explained P05.

In contrast, 9 out of 14 participants found that as the system’s
autonomy increased, their sense of ownership diminished. “When
the arms acted on their own, it was more like watching but not con-
trolling”, P05 said. Although the system efficiently performed tasks,
the lack of direct involvement left participants feeling disconnected,
which “didn’t feel like my arm anymore,” noted P07, and this is also
mirrored in our quantitative findings in Section 5.1.
Sense of Agency: Participants (10 out of 14) reported that direct
control enhanced their sense of agency, providing a feeling of mas-
tery, especially during precision tasks. “I felt more control when I
moved the arms”, said P03. Conversely, increased autonomy reduced
participants’ sense of being in control, with 8 out of 14 participants
reporting a shift to an observer role. “When the arms worked, I
felt like more of an observe”, shared P02. The quantitative findings
(Section 5.1) also mirrored this trend. While autonomy allowed
efficiency, it diminished participants’ perception of control.
Sense of Self-Location: 9 out of 14 participants experienced a
sense of self-location when the VSLs closely synchronized with
their real bodies. “I didn’t really feel like they were extra or separate”,
said P07. However, when the system’s movements failed to meet
expectations, it disrupted this connection. “If the arms didn’t follow
my action in time, I felt disconnected”, noted P02. 7 out of 14 partic-
ipants, managing multiple VSLs simultaneously was challenging
for their spatial awareness, particularly during complex tasks.
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Addressing Research Question: These findings directly address
RQ3, revealing howparticipants’ perceptions of embodiment—specifically
body ownership, agency, and self-location—shifted with varying
levels of autonomy. The stronger sense of ownership and agency
in low-autonomy conditions contrasted with the diminished em-
bodiment in high-autonomy settings, highlighting the critical role
of direct control in shaping user experience.

5.2.2 “I felt like I was juggling!” — Control Strategies and
Their Perceived Performance. Controlling a single limb in vir-
tual reality allows participants to intuitively manage actions. How-
ever, controlling multiple VSLs highlights how often coordination
is required and how difficult it is to maintain. 11 out of 14 partici-
pants in our study highlighted how managing several limbs at once
required them to constantly shift focus and attention, making it
difficult to allow smooth coordination between VSLs. “It felt like
juggling tasks”, P05 remarked, emphasizing the complexity of main-
taining precise, synchronized movements when operating multiple
VSLs simultaneously.
Direct Control and Autonomous Repetition: 8 out of 14 partici-
pants used various strategies to delegate tasks to the VSLs. Some
(N=13) preferred for direct control, where the VSLs mirrored their
movements, especially at low autonomy level. “Left arm, mirror my
movements”, P11 said, who employed a specific strategy to teach
the VSLs to follow their avatar’s limbs’ actions. P03 described their
approach, saying, “I choose to do a simple action, and ask it to learn
and follow”. “It is easier”, they added, “It [is] like another arm that
did learn what I was doing, but I need to look at two arms”. 6 out
of 14 participants named the action before demonstrating it. For
example, P08 said “This is rotate, rotate this way” to teach the VSLs.
This allowed for real-time adjustments, but it became mentally ex-
hausting when managing multiple VSLs. “It required so much more
effort and guidance, which was tiring”, noted P02.

6 out of 14 participants opted to teaching the VSLs a set of actions
to repeat autonomously. “Once I showed the arm how to do something,
I didn’t have to guide it anymore—it just kept going”, P05 said. While
this method was efficient, it sometimes required several tries to
ensure correct execution. P06 clearly described this idea: “I wanted to
demonstrate a movement and let left arm learn it. I taught it a simple
action, then keep it do it again and again. Just kept going until I say
stop”. In contrast, at higher levels of autonomy, all participants opted
for more direct command strategies rather than demonstrations
to control the VSLs. As P04 issued the command, “Robotic [virtual
supernumerary] Arm, press the red button”, the system executed the
task autonomously. Instead of showing the VSLs how to perform
an action, 8 out of 14 participants simply gave verbal commands
and let the system execute the task autonomously.
Organizing Strategies for Efficiency: Pre-planning and labelling
tasks by object properties played a crucial role in improving task
management for 13 out of 14 participants. 10 out of 14 participants
in the factory task tried labeling objects by color or shape to im-
prove task management and streamline interactions with the VSLs.
P06 said, “Robotic [virtual supernumerary] arms, this is light [Illumi-
nated button], always press the light one [Illuminated button]”, this
participant explained it by adding, “I [labelled] the target how I felt
like, and yeah, it’s red, but I’m ... used to calling stuff that lights up a
‘light button,’ so that’s what I said”. However, 4 out of 14 participants

felt that too much pre-planning disrupted their natural workflow.
“I spent more time trying to label thing[s]”, explained P09, indicating
that excessive organization could slow down task execution.

In addition to labeling, 5 out of 14 participants categorized ob-
jects by size or function, which enhanced coordination. Once ev-
erything was sorted, I didn’t have to keep thinking about it” (P08).
This strategy reduced decision-making during the task, but 4 out
of 14 participants found it challenging to balance planning with
keeping their momentum. One participant remarked, [Planning]
helped, but I sometimes lost track of the main task when I was too
focused on organizing,” said P11.

At the high-autonomy level, 6 out of 14 participants chose not to
label targets themselves. Instead, they followed conventional rules
when issuing commands, rather than assigning custom names to
the targets. “I could say something like ‘rotate the box 180 degrees’ or
‘press the red button’, and they’d just do it”, noted P04.
Managing Task Control Approaches: Sequential handling al-
lowed for better control but took more time, especially at low-
autonomy levels. “Doing one thing at a time... , it gave me more
control, but it just slowed me down”, noted P08. In contrast, multi-
tasking offered speed but led to more errors. “When I tried doing
both at once, it felt faster, but..., I made way more mistakes” (P01). At
high-autonomy level, 7 out of 14 participants demonstrated different
strategies for managing control between themselves and the VSLs.
For high-priority, delicate tasks, 4 out of 14 participants preferred
keeping full control to ensure accuracy. “I just liked handling those
tasks myself, the ones that needed constant adjusting” said P03. Oth-
ers found it more efficient to delegate even complex tasks to the
autonomous VSLs, especially when juggling multiple tasks. “I’d let
the arms handle the boring stuff, and even some of the tricky bits, just
so I could focus on hard thing, like find the shape”, noted P05.

Switching between sequential and simultaneous actions was
tough for 5 out of 14 participants, while 6 out of 14 participants
adapted by letting the VSLs handle repetitive tasks. 6 out of 14
participants often switched control modes based on task complexity.
“For the simpler stuff, I’d just ... teach it to take over... but when it was
more detailed, I’d switch back to doing it manually”, explained P09.
Addressing Research Question: These observations answer RQ1
by demonstrating how users dynamically shifted between teaching-
by-demonstration, labeling, and delegation strategies based on spe-
cific task demands. Furthermore, the reduced error rates and signif-
icantly improved efficiency in the high-autonomy level (Sec. 5.2.1)
address RQ2, showing that higher autonomy enhanced task man-
agement for complex scenarios but required users to adapt their
coordination approaches.

5.2.3 Summary. Our study examined participant interactions
with semi-autonomous VSLs across two autonomy levels. Qual-
itative results showed that participants preferred direct control
in low-autonomy level, which strengthened their sense of body
ownership, agency, and self-location. At this level, participants
used strategies like having the VSLs follow their actions, repeat
simple tasks, or even labeling objects themselves to improve task
management. In high-autonomy level, participants found it more
efficient to delegate tasks to the system, relying on verbal com-
mands and pre-defined rules rather than manual control or custom
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Figure 5: The flow of the follow and repeat strategies performed by participants.

labeling. However, this shift led to a diminished sense of control
and connection to the limbs.

6 DISCUSSION
Building on our findings, we have identified key implications for
designing and improving autonomous VSLs in VR. This section ex-
plores how users adapt control strategies, manage task complexity,
and experience embodiment when coordinating VSLs. Additionally,
we discuss challenges and opportunities in integrating system au-
tonomy to enhance user experience and system responsiveness in
future VR applications.

6.1 Implications for Control strategies and VSLs
Control

Our findings reveal that selecting effective control strategies is
critical for optimizing the use of VSLs. Participants adapted their
strategies based on task complexity and autonomy levels, shift-
ing between verbal commands, teaching by demonstration, and
manual control to best suit task demands. While low autonomy
settings benefited from precise, step-by-step instructions, higher
autonomy allowed for efficient task delegation. However, balancing
manual input and autonomy presented challenges, particularly in
multitasking scenarios, where task-switching disrupted workflow.

We selected VR as a research platform for simulating and eval-
uating VSLs interactions due to its capacity to safely and flexibly
replicate scenarios that are challenging to achieve with physical
robotic systems. Prior research suggests that VR can serve as an
effective prototyping environment for understanding body schema
extension and control strategies, with potential applications in
physical settings [3, 41]. Although VR-based embodiment involves
a level of user “suspension of disbelief” [52], it still enables valuable
insights into user adaptation to novel body configurations. While
our findings focus on VR, they provide foundational insights that
may guide future exploration with physical robotic limbs, assuming
that VR-to-reality transferability is feasible.

While previous research has explored multimodal interaction
and task management [14, 36], further development is needed in
the following directions to enable smoother transitions of control.
Verbal Control: Our results demonstrate that continuous verbal
control was most effective in low-autonomy settings, where partici-
pants needed precise, step-by-step instructions to guide the VSLs,
aligned with prior research [32]. However, as task complexity or au-
tonomy increased, continuous verbal control became less efficient,
reflecting the challenges of maintaining precision when managing
VSLs in real-time.

With higher autonomy, participants adoptedmore efficient strate-
gies such as task delegation or pre-labeled ensemble actions (Fig-
ure 6), which reduced reliance on continuous verbal input by allow-
ing the system to execute tasks autonomously after initial instruc-
tions. Previous studies on multimodal interaction similarly suggest
that as autonomy increases, users prefer intuitive, low-effort meth-
ods like task abstraction or labeling [14]. Controlling VSLs under
non-fixed mapping further exacerbated challenges, as simultaneous
tracking and the lack of consistent mapping made precise verbal
input difficult.

Participants often combined labeling with control by example
to simplify task management, streamlining control and enabling
autonomous handling of multi-step tasks. However, unlike studies
employing pre-defined control schemes [12, 13], the reliance on
customized labels introduced challenges, particularly the repeated
guidance needed when the system failed to learn correctly. To
address these issues, future systems should reduce user intervention
required for correcting learning failures.
Control Choice as a Function of Task or Autonomy: Participants
adapted their control strategies based on task complexity, with
simpler, repetitive tasks delegated to the autonomous VSLs and
more complex, high-stakes tasks managed manually, as shown in
figure 5. Research in task management, such as Rasmussen’s Skill-
Rule-Knowledge Framework, supports this approach, where simple
tasks are categorized as skill-based and easily automated, while
complex tasks, which are knowledge-based, require manual control
for greater precision [46]. The consistent preference for manual
control in critical tasks, even when autonomy was available, reflects
the importance of precision and control for participants.

Task-switching, intended to facilitate multitasking, often ended
up disrupting the flow of tasks instead. Switching frequently be-
tween manual and autonomous control, especially in complex tasks,
interrupted their workflow, making it harder to maintain smooth
task execution. While autonomy improved efficiency for simpler
tasks, more complex tasks required careful oversight. Rather than
treating autonomy and manual control as separate modes, future
systems should integrate these approaches more seamlessly, allow-
ing for dynamic shifts based on task complexity without disrupting
the user’s workflow.

6.2 Optimizing Control and Performance in
Multiple VSLs Systems

Managing multiple VSLs revealed important insights into the in-
tersection of body ownership, agency, and task efficiency. While



Juggling Extra Limbs: Identifying Control Strategies for Supernumerary Multi-Arms in Virtual Reality CHI ’25, April 26–May 01, 2025, Yokohama, Japan

This is a light button Labeling: Light
Button Press the light 

button

Figure 6: The organizing strategies performed by participants.

participants faced significant challenges in coordination across au-
tonomy levels, the study highlighted opportunities for optimization.
Participants noted the potential of multiple VSLs when designed
with a balance of manual and autonomous control. However, achiev-
ing optimal efficiency and sustained engagement requires careful
attention to synchronization, attention allocation, and user feed-
back mechanisms. This section explores these factors and identifies
strategies for improving multiple VSLs systems.
Sense of Body Ownership in Autonomous Multiple VSLs Sys-
tems: In low-autonomy conditions, participants felt a stronger
sense of body ownership, perceiving the VSLs as natural extensions
of their body. Coordinated control reinforced this connection, but
higher autonomy levels introduced a noticeable disconnect, espe-
cially when autonomous actions disrupted limb coordination, as
similarly observed in previous research [48, 91]. Participants fa-
vored partial autonomy, which allowedmanual control of key move-
ments while efficiently delegating routine tasks, balancing control
and assistance. Precise visual alignment between the avatar’s limbs
and VSLs remained crucial for maintaining ownership across all
autonomy levels. Future systems should leverage real-time visual
feedback to continuously reinforce this connection.
Sense of Agency in AutonomousMultiple VSLs Systems: Higher
autonomy shifted participants’ roles from direct control to supervi-
sion, transforming agency into a strategic interaction—a contrast to
the findings of Firlej and Taeihagh [23]. While partial control over
one VSL, combined with monitoring the other, helped maintain
participants’ sense of influence even in high-autonomy conditions,
agency was not perceived as a simple binary state [54]. Instead, it
emerged as a dynamic experience, with participants continually
balancing delegation and responsibility. However, unpredictability
in the system’s responses introduced cautious delegation, which, in
turn, affected participants’ confidence in the autonomous features.
Attention Management and Task Efficiency in Multiple VSLs
Control: Task efficiency depended on how participants allocated
cognitive attention [21, 71, 72, 72]. Attention theories, such as Kah-
neman’s model of attention [9], suggest that humans allocate lim-
ited mental resources to tasks based on demand and importance.
Dividing attention between manual and autonomous tasks opti-
mized performance, allowing participants to focus on complex
actions while VSLs handled routine tasks [1]. However, frequent
task-switching disrupted flow and reduced efficiency [11]. Sus-
tained attention became increasingly challenging in high-demand
tasks, with monitoring autonomous VSLs leading to fatigue. Future
designs should prioritize attention management by assigning tasks
based on graded attention levels.

Opportunities of Using Multiple VSLs: The potential of mul-
tiple VSLs systems spans various fields as supernumerary limbs
approach real-world applications [8, 74, 78]. Prior studies have ex-
plored augmenting human capabilities through robotic systems in
controlled settings like manufacturing and healthcare [83, 87, 88].
Our research builds on this by showing how VR-developed control
strategies can guide VSLs implementation in dynamic scenarios.
In industries like manufacturing and logistics, delegating repet-
itive tasks to VSLs allows workers to focus on precision-driven
actions [17, 68], reflecting our findings where participants assigned
simpler tasks to autonomous VSLs while managing complex ones
manually. This approach could enhance productivity by aligning
with selective attention needs in high-demand environments. In
healthcare, multiple supernumerary limbs systems could support
injury recovery, physical therapy, and assistive technologies for
individuals with disabilities [45]. Studies highlight adaptability as
crucial in rehabilitation technologies [55], and our findings suggest
VSLs could further personalize therapy.

6.3 Challenges and Opportunities of Non-Fixed
Mapping

The non-fixed mapping of control in multi-arm systems posed both
challenges and opportunities. High-autonomy conditions reduced
mental load by allowing VSLs to handle simpler tasks, but the lack of
fixed associations introduced uncertainty. In low-autonomy settings,
frequent switching and manual coordination increased cognitive
strain. Even in high-autonomy scenarios, participants hesitated to
fully trust the system’s autonomous decisions, especially when
precision was needed. This section explores the impact of non-fixed
mapping on workload and autonomy.
Workload Distribution and Cognitive Strain in Autonomous
Non-Fixed Mapping Systems: In low-autonomy conditions, par-
ticipants experienced higher cognitive load due to frequent task
switching and manual coordination between the VSLs. The absence
of fixed task-to-limb associations required continuous monitoring
and role adjustments, increasing mental strain and reducing effi-
ciency. Conversely, high-autonomy conditions alleviated much of
this burden by delegating simpler tasks to the VSLs, allowing par-
ticipants to focus on more complex actions, consistent with prior
findings [85]. However, participants still had to monitor the VSLs,
and the non-fixed mapping introduced uncertainty in balancing
manual control and trust in the system.
Trust and Control in Autonomous Multiple VSLs Systems:
Managing multiple VSLs in low-autonomy settings was challenging,
particularly when precision was required, as participants had to
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Table 1: This table presents key findings from our study alongside corresponding design suggestions for enhancing multiple
VSLs control systems. The table is organized into categories reflecting the main themes discussed in our results and discussion
sections. Each row aligns a specific strategy with its main findings, followed by actionable design recommendations aimed at
improving task management, user experience, and system efficiency in multiple VSLs VR interactions.

Control strategies and VSLs Control (Section 6.1)

Strategists Main Finding Design Suggestions

Verbal Control Frequent switching between VSLs interrupted workflow
and added cognitive load.

Enable smoother switching between control modes. Pro-
vide flexible task role reassignment mechanisms.

Task Demonstration Direct mirroring required high user attention and fre-
quent recalibration.

Incorporate hybrid control (manual and automated) sys-
tems. Offer real-time feedback on positioning.

Task management Labeling improved coordination but pre-defined cate-
gories reduced flexibility.

Support dynamic object recognition. Allow on-the-fly
adjustments to categories and labels.

Control and Performance in Multiple VSLs Systems (Section 6.2)

Body Ownership Participants felt disconnected from VSLs during high
autonomy and poor alignment with their body percep-
tion.

Provide real-time visual feedback. Gradually adjust con-
trol autonomy.

Agency Users preferred manual control in critical tasks, and
labeling improved trust in autonomous actions.

Balance autonomy and manual control with user-
defined labels. Offer options for customizable task as-
signment.

Task Efficiency Synchronizing multiple VSLs was challenging, and in-
terruptions impacted performance.

Introduce visual and auditory cues for better synchro-
nization. Enable dynamic task distribution based on
VSLs usage.

Challenges and Opportunities of Non-Fixed Mapping (Section 6.3)

Workload Manual control in low-autonomy settings increased
workload; high-autonomy shifted users to a supervisory
role.

Provide proactive feedback mechanisms. Let users tog-
gle between manual and autonomous modes.

Autonomy High autonomy caused uncertainty and reduced user
confidence, while manual control was seen as more pre-
dictable.

Ensure autonomy is predictable and transparent. Imple-
ment clear trust-building mechanisms.

manually coordinate each limb. In high-autonomy settings, trust
became a key issue as participants were hesitant to rely fully on
the system’s autonomous decision-making when control switched
between VSLs without direct input. While autonomy reduced the
manual burden, unpredictable decisions led to reduced confidence.
As emphasized by Hancock et al. [85], mismatches between user
trust and system reliability can result in either overtrust or dis-
trust. Future systems should offer more transparent and predictable
autonomous decisions to address these challenges in non-fixed
mapping scenarios.

7 Limitations and Future Work
Our study has several limitations that should be noted to inform fu-
ture research. In this study, the autonomy of the VSLs was simulated
using a Wizard-of-Oz approach, where the system’s autonomous
behavior was covertly controlled. Although participants believed
they were interacting with fully autonomous VSLs, the system’s
responses were manually guided. This allowed us to explore a
range of interaction scenarios, but the simulation may not fully
capture how users would behave with truly autonomous systems.
Specifically, participants were limited to interacting with the VSLs

through mediated commands without the ability for direct physical
interaction. The absence of real-time system errors or unexpected
actions typically encountered with fully autonomous VSLs could
influence the user’s experience. As a result, these findings may
not entirely generalize to real-world autonomous systems. Future
studies with actual autonomous systems are needed to further vali-
date how users would engage with and trust such technologies in
uncontrolled environments.

While VR served as an accessible and controlled platform for
studying supernumerary limb interactions, we recognize that our
findings are still speculative regarding their application to physical
robotic systems. Although past studies indicate potential transfer-
ability from VR to real-world settings [3, 41], our findings require
further validation with physical prototypes before they can be
confidently applied to actual supernumerary robotic limbs. Conse-
quently, while this study provides initial insights, future work is
necessary to comprehensively assess the relevance of these insights
in real-world contexts.

We focused on two distinct levels of autonomy to examine how
users interact with the VSLs, offering valuable insights into basic
control strategies. However, this limited scope may not capture the
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full range of system autonomy or task complexity that could arise in
more dynamic, real-world scenarios. Future work should explore a
broader spectrum of autonomy levels and task complexities to better
understand how users adapt to varying system autonomy. Similarly,
while our tasks were designed to isolate specific coordination and
control challenges, they may not represent the full variety of real-
world applications for supernumerary limbs. Expanding the scope
of tasks in future studies will help validate findings across a wider
range of use cases.

While the sample size meets the typical standards for exploratory
studies in Human-Computer Interaction (HCI) to gather qualita-
tive insights and identify key interaction patterns [10], it may still
limit the generalizability of the findings. Similar sample sizes have
been used in comparable exploratory studies, such as those by
Muehlhaus et al. [51], to effectively investigate interaction strate-
gies. The study’s small sample size, while suitable for qualitative
exploration, limits the generalizability of the quantitative findings.
The quantitative metrics, such as task completion time and error
rate, should be interpreted as exploratory trends rather than de-
finitive results. Furthermore, certain user diversity factors, such as
color blindness or other visual impairments, were not considered.
Future studies should incorporate a larger, more diverse participant
pool to address potential accessibility challenges and ensure the
system’s inclusivity.

8 CONCLUSION
In this work, we explored how varying levels of autonomy in VSLs
affected user interaction, control strategies, and embodiment in a
VR environment. Through two task-based VR activities— the Basic
Control Task and the Factory Task—we examined how users adapted
to low and high autonomy using the VSLs across two tasks. Our
findings demonstrate that participants preferred assigning repeti-
tive or lower-priority tasks to the VSLs while maintaining direct
control over more critical actions. Additionally, participants re-
ported a stronger embodiment and control with a low-autonomy
level, while a high-autonomy level allowed for greater task effi-
ciency but a weakened embodiment of the VSLs. We have discussed
the key implications of our themes on future research and design.
In addition, we have provided a discussion of use cases for control
strategies and a table of concrete suggestions. Our findings are
based on VR-based simulations of VSLs and provide insights into
virtual embodiments. While these insights offer potential directions
for real-world robotic systems, further research is needed to val-
idate these results in physical environments. This understanding
is crucial for designing autonomous systems that enhance user
experience, improve task performance, and maintain a strong em-
bodiment, with potential applications in gaming, rehabilitation, and
assistive technologies.
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A Autonomy level details
Before starting the study, we introduced the participants to an
action guide detailing the operational behaviors of the virtual su-
pernumerary limbs. The operator adhered to this predefined guide,
which specified responses to participant commands across different
autonomy levels.

A.1 Low-autonomy level
Description: At this level, the virtual supernumerary limbs have ba-
sic capabilities, including the ability to perceive what is happening
in their environment. They can understand and respond to simple
instructions and learn from user interactions. However, while they
can recognize general elements in the environment, they cannot
automatically determine where or how to place specific objects
without explicit user guidance. The arms rely on you to guide them
step by step on how to complete tasks, categorizing items based on
your instructions.

Capabilities: While they understand their surroundings, they
depend on you to guide their actions. They respond well to step-
by-step instructions where you guide each action.

Role: You will need to provide detailed, step-by-step guidance
through verbal or gestural commands on how the virtual super-
numerary limbs should sort and handle objects. These arms can
only recognize and act upon the tasks you have specifically taught
them. They cannot automatically identify or categorize items they
haven’t learned before, so they rely entirely on your instructions
to understand and execute each action.

A.2 High-autonomy level
Description: This version of the virtual supernumerary limb system
is significantly more advanced, with improved language compre-
hension and the ability to understand complex tasks. It also auto-
matically recognizes things in the environment, reducing the need
for teach them, and allows you to demonstrate and execute complex
tasks and instructions. However, they do not inherently know what
actions to take; they need you to instruct them on what to do.
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Capabilities: The virtual supernumerary limbs can autonomously
recognize their surroundings. However, they still require your in-
structions to determine what actions to take. Once directed, they
can efficiently execute tasks with minimal guidance.

Role: You will need to provide clear instructions on what actions
the arms should take. Whether it’s sorting objects, placing them
in specific locations, or any other task, the virtual supernumerary
limbs depend on your directives to know what to do. The arms are
designed to follow your commands accurately, but they rely on you
to define the task and guide their actions accordingly.

B Operator Action Guidelines
The operator followed a predefined set of action rules to ensure
consistency across participants and tasks. These guidelines were
tailored to the study’s four instruction types and autonomy levels,
aligning with principles from multi-agent coordination and robot
learning frameworks [4, 22, 38, 90]:

B.1 Command Instructions
Low-autonomy: Perform each step based on explicit participant
guidance (e.g., grasp, move, rotate). For instance, the operator can
rotate a block incrementally in response to specific participant
instructions for each action. If a series of commnads given, only
execute the first. If a complex command such as a combined task
given, do not perform any actions. High-autonomy: Execute the

full sequence or complex actions based on the command’s intent
(e.g., directly move a labeled object to a specified position).

B.2 Demonstration Instructions
Low-autonomy: Mimic participant’s demonstrations step-by-step.
If the participant rotated an object, the operator replicated the
action. High-autonomy: Learn the demonstrated action and exe-
cute autonomously for similar objects. For instance, stacking two
blocks based on a demonstration was applied to subsequent blocks
independently.

B.3 Delegation Instructions
Low-autonomy: No action was taken, as Delegation Instructions
were not supported under this autonomy level. High-autonomy:
Plan and execute tasks sequentially after an instruction. A single
command like “Organize objects by size in a row” prompted the
operator to complete the task autonomously.

B.4 Labeling Instructions
Low-autonomy: Identify and label objects explicitly based on partic-
ipant input. For example, the operator must wait for the participant
to confirm “The red squar” before proceeding. High-autonomy:
Automatically identify attributes and proceed with the complex
tasks without additional guidance.
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